IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Cooperative metaheuristics for the permutation flowshop scheduling problem

  • Vallada, Eva
  • Ruiz, Rubén
Registered author(s):

    In this work, we propose cooperative metaheuristic methods for the permutation flowshop scheduling problem considering two objectives separately: total tardiness and makespan. We use the island model where each island runs an instance of the algorithm and communications start when the islands have reached certain level of evolution, that is, communication is not allowed from the beginning of the execution. Subsequent ones occur when new better solutions are found. We carry out an exhaustive comparison of the cooperative methods against the sequential counterparts running in completely comparable scenarios. Results have been carefully analysed by means of statistical procedures and we can conclude that the cooperative methods yield much better results than the sequential algorithms and state-of-the-art methods running in the same number of processors but without communications. The proposed cooperative schemes are easy to apply to other algorithms and problems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6VCT-4R8H1RF-1/2/bdb46baa31911b50fbb36692673c7544
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 193 (2009)
    Issue (Month): 2 (March)
    Pages: 365-376

    as
    in new window

    Handle: RePEc:eee:ejores:v:193:y:2009:i:2:p:365-376
    Contact details of provider: Web page: http://www.elsevier.com/locate/eor

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    2. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    3. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    4. Peng Si Ow, 1985. "Focused Scheduling in Proportionate Flowshops," Management Science, INFORMS, vol. 31(7), pages 852-869, July.
    5. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    6. Tseng, Fan T. & Stafford, Edward F. & Gupta, Jatinder N. D., 2004. "An empirical analysis of integer programming formulations for the permutation flowshop," Omega, Elsevier, vol. 32(4), pages 285-293, August.
    7. Onwubolu, Godfrey & Davendra, Donald, 2006. "Scheduling flow shops using differential evolution algorithm," European Journal of Operational Research, Elsevier, vol. 171(2), pages 674-692, June.
    8. Kim, Yeong-Dae & Lim, Hyeong-Gyu & Park, Moon-Won, 1996. "Search heuristics for a flowshop scheduling problem in a printed circuit board assembly process," European Journal of Operational Research, Elsevier, vol. 91(1), pages 124-143, May.
    9. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    10. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    11. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:193:y:2009:i:2:p:365-376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.