IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v29y2001i6p577-584.html
   My bibliography  Save this article

A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots

Author

Listed:
  • Kalir, Adar A.
  • Sarin, Subhash C.

Abstract

In this paper, we consider the lot-streaming problem of sequencing a set of batches, to be processed in equal sublots, in a flow-shop, so as to minimize makespan. A new heuristic procedure, called the bottleneck minimal idleness heuristic, is developed. Results of an experimental study are presented. It is shown that the proposed procedure generates solutions that are very close to the optimal solutions, and that the solutions generated are better than those obtained by using the fast insertion heuristic, considered to be a good heuristic for solving the flow-shop scheduling problem, when applied to the problem on hand.

Suggested Citation

  • Kalir, Adar A. & Sarin, Subhash C., 2001. "A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots," Omega, Elsevier, vol. 29(6), pages 577-584, December.
  • Handle: RePEc:eee:jomega:v:29:y:2001:i:6:p:577-584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(01)00046-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Trietsch & Kenneth R. Baker, 1993. "Basic Techniques for Lot Streaming," Operations Research, INFORMS, vol. 41(6), pages 1065-1076, December.
    2. Chen, Jiang & Steiner, George, 1997. "Lot streaming with detached setups in three-machine flow shops," European Journal of Operational Research, Elsevier, vol. 96(3), pages 591-611, February.
    3. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    4. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    5. Stéphane Dauzère-Pérès & Jean-Bernard Lasserre, 1997. "Lot Streaming in Job-Shop Scheduling," Operations Research, INFORMS, vol. 45(4), pages 584-595, August.
    6. Baker, KR & Jia, D, 1993. "A comparative study of lot streaming procedures," Omega, Elsevier, vol. 21(5), pages 561-566, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    2. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
    3. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    4. Adar A. Kalir & Subhash C. Sarin, 2003. "Constructing Near Optimal Schedules for the Flow-Shop Lot Streaming Problem with Sublot-Attached Setups," Journal of Combinatorial Optimization, Springer, vol. 7(1), pages 23-44, March.
    5. Chengshuai Li & Biao Zhang & Yuyan Han & Yuting Wang & Junqing Li & Kaizhou Gao, 2022. "Energy-Efficient Hybrid Flowshop Scheduling with Consistent Sublots Using an Improved Cooperative Coevolutionary Algorithm," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
    6. Yossi Bukchin & Michael Masin & Rinat Kirshner, 2010. "Modeling and analysis of multiobjective lot splitting for N‐product M‐machine flowshop lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(4), pages 354-366, June.
    7. Tseng, Chao-Tang & Liao, Ching-Jong, 2008. "A discrete particle swarm optimization for lot-streaming flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 360-373, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    2. Adar A. Kalir & Subhash C. Sarin, 2003. "Constructing Near Optimal Schedules for the Flow-Shop Lot Streaming Problem with Sublot-Attached Setups," Journal of Combinatorial Optimization, Springer, vol. 7(1), pages 23-44, March.
    3. Chiu, Huan Neng & Chang, Jen Huei, 2005. "Cost models for lot streaming in a multistage flow shop," Omega, Elsevier, vol. 33(5), pages 435-450, October.
    4. Vickson, Raymond G. & Hassini, Elkafi, 2006. "Lot streaming for quality control in two-stage batch production," European Journal of Operational Research, Elsevier, vol. 170(3), pages 824-843, May.
    5. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    6. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    7. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    8. Kalir, Adar A. & Sarin, Subhash C., 2000. "Evaluation of the potential benefits of lot streaming in flow-shop systems," International Journal of Production Economics, Elsevier, vol. 66(2), pages 131-142, June.
    9. Fernandez-Viagas, Victor & Talens, Carla & Prata, Bruno de Athayde, 2025. "A speed-up procedure and new heuristics for the classical job shop scheduling problem: A computational evaluation," European Journal of Operational Research, Elsevier, vol. 322(3), pages 783-794.
    10. Mukherjee, Saral & Chatterjee Ashis K, 2002. "Applying Machine Based Decomposition in 2-Machine Flow Shops," IIMA Working Papers WP2002-08-05, Indian Institute of Management Ahmedabad, Research and Publication Department.
    11. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    12. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    13. Zhang, Wei & Yin, Changyu & Liu, Jiyin & Linn, Richard J., 2005. "Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 96(2), pages 189-200, May.
    14. Sarin, Subhash C. & Kalir, Adar A. & Chen, Ming, 2008. "A single-lot, unified cost-based flow shop lot-streaming problem," International Journal of Production Economics, Elsevier, vol. 113(1), pages 413-424, May.
    15. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    16. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    17. Chung‐Lun Li & Wen‐Qiang Xiao, 2004. "Lot streaming with supplier–manufacturer coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 522-542, June.
    18. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    19. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    20. Mukherjee, Saral & Chatterjee, A.K., 2006. "Applying machine based decomposition in 2-machine flow shops," European Journal of Operational Research, Elsevier, vol. 169(3), pages 723-741, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:29:y:2001:i:6:p:577-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.