IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p271-d1318960.html
   My bibliography  Save this article

Simulation of Heuristics for Automated Guided Vehicle Task Sequencing with Resource Sharing and Dynamic Queues

Author

Listed:
  • Jonas F. Leon

    (Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
    Spindox España S.L., 08021 Barcelona, Spain)

  • Mohammad Peyman

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Xabier A. Martin

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Angel A. Juan

    (Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain)

Abstract

Automated guided vehicles (AGVs) stand out as a paradigmatic application of Industry 4.0, requiring the seamless integration of new concepts and technologies to enhance productivity while reducing labor costs, energy consumption, and emissions. In this context, specific industrial use cases can present a significant technological and scientific challenge. This study was inspired by a real industrial application for which the existing AGV literature did not contain an already well-studied solution. The problem is related to the sequencing of assigned tasks, where the queue formation dynamics and the resource sharing define the scheduling. The combinatorial nature of the problem requires the use of advanced mathematical tools such as heuristics, simulations, or a combination of both. A heuristic procedure was developed that generates candidate task sequences, which are, in turn, evaluated in a discrete-event simulation model developed in Simul8. This combined approach allows high-quality solutions to be generated and realistically evaluated, even graphically, by stakeholders and decision makers. A number of computational experiments were developed to validate the proposed method, which opens up some future lines of research, especially when considering stochastic settings.

Suggested Citation

  • Jonas F. Leon & Mohammad Peyman & Xabier A. Martin & Angel A. Juan, 2024. "Simulation of Heuristics for Automated Guided Vehicle Task Sequencing with Resource Sharing and Dynamic Queues," Mathematics, MDPI, vol. 12(2), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:271-:d:1318960
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas F. Leon & Yuda Li & Mohammad Peyman & Laura Calvet & Angel A. Juan, 2023. "A Discrete-Event Simheuristic for Solving a Realistic Storage Location Assignment Problem," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    2. Karlijn Fransen & Joost van Eekelen, 2023. "Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic," International Journal of Production Research, Taylor & Francis Journals, vol. 61(3), pages 707-725, February.
    3. Kap Hwan Kim & Jong Wook Bae, 2004. "A Look-Ahead Dispatching Method for Automated Guided Vehicles in Automated Port Container Terminals," Transportation Science, INFORMS, vol. 38(2), pages 224-234, May.
    4. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.
    5. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    2. Caroline Lloyd & Jonathan Payne, 2021. "Fewer jobs, better jobs? An international comparative study of robots and ‘routine’ work in the public sector," Industrial Relations Journal, Wiley Blackwell, vol. 52(2), pages 109-124, March.
    3. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    4. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    5. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    6. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    7. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    8. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    9. Yu-Jun Zheng & Yi-Chen Du & Wei-Guo Sheng & Hai-Feng Ling, 2019. "Collaborative Human–UAV Search and Rescue for Missing Tourists in Nature Reserves," Interfaces, INFORMS, vol. 49(5), pages 371-383, September.
    10. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    11. Ramalhinho Lourenco, Helena, 1996. "Sevast'yanov's algorithm for the flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 176-189, May.
    12. Ayoub Tighazoui & Christophe Sauvey & Nathalie Sauer, 2024. "Heuristics for flow shop rescheduling with mixed blocking constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 169-201, July.
    13. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    14. B-J Joo & Y-D Kim, 2009. "A branch-and-bound algorithm for a two-machine flowshop scheduling problem with limited waiting time constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 572-582, April.
    15. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    16. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    17. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Yuan-Yuan Lu & Na Ren & Ji-Bo Wang, 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    18. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    19. Matin, Hossein N.Z. & Salmasi, Nasser & Shahvari, Omid, 2017. "Makespan minimization in flowshop batch processing problem with different batch compositions on machines," International Journal of Production Economics, Elsevier, vol. 193(C), pages 832-844.
    20. Bharat Goyal & Sukhmandeep Kaur & Deepak Gupta, 2024. "A heuristic approach to minimizing the waiting time of jobs in two stage flow shop scheduling," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 175-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:271-:d:1318960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.