IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v116y1999i1p156-170.html
   My bibliography  Save this article

A comparative study of dispatching rules in dynamic flowshops and jobshops

Author

Listed:
  • Rajendran, Chandrasekharan
  • Holthaus, Oliver

Abstract

No abstract is available for this item.

Suggested Citation

  • Rajendran, Chandrasekharan & Holthaus, Oliver, 1999. "A comparative study of dispatching rules in dynamic flowshops and jobshops," European Journal of Operational Research, Elsevier, vol. 116(1), pages 156-170, July.
  • Handle: RePEc:eee:ejores:v:116:y:1999:i:1:p:156-170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(98)00023-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Johnny C., 1995. "Flowshop sequencing with mean flowtime objective," European Journal of Operational Research, Elsevier, vol. 81(3), pages 571-578, March.
    2. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    3. Hunsucker, J. L. & Shah, J. R., 1994. "Comparative performance analysis of priority rules in a constrained flow shop with multiple processors environment," European Journal of Operational Research, Elsevier, vol. 72(1), pages 102-114, January.
    4. David G. Dannenbring, 1977. "An Evaluation of Flow Shop Sequencing Heuristics," Management Science, INFORMS, vol. 23(11), pages 1174-1182, July.
    5. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    6. Hunsucker, J. L. & Shah, J. R., 1992. "Performance of priority rules in a due date flow shop," Omega, Elsevier, vol. 20(1), pages 73-89, January.
    7. Ramasesh, R, 1990. "Dynamic job shop scheduling: A survey of simulation research," Omega, Elsevier, vol. 18(1), pages 43-57.
    8. Ishibuchi, Hisao & Misaki, Shinta & Tanaka, Hideo, 1995. "Modified simulated annealing algorithms for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 81(2), pages 388-398, March.
    9. Raghu, T. S. & Rajendran, Chandrasekharan, 1993. "An efficient dynamic dispatching rule for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 32(3), pages 301-313, November.
    10. C. T. Baker & B. P. Dzielinski, 1960. "Simulation of a Simplified Job Shop," Management Science, INFORMS, vol. 6(3), pages 311-323, April.
    11. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hong & Cheung, Waiman & Leung, Lawrence C., 2009. "Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm," European Journal of Operational Research, Elsevier, vol. 194(3), pages 637-649, May.
    2. Kuo, Yiyo & Yang, Taho & Cho, Chiwoon & Tseng, Yao-Ching, 2008. "Using simulation and multi-criteria methods to provide robust solutions to dispatching problems in a flow shop with multiple processors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 40-56.
    3. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2008. "Cooperative dispatching for minimizing mean flowtime in a dynamic flowshop," International Journal of Production Economics, Elsevier, vol. 113(2), pages 819-833, June.
    4. repec:eee:ejores:v:263:y:2017:i:2:p:524-539 is not listed on IDEAS
    5. Lodree, Emmett & Jang, Wooseung & Klein, Cerry M., 2004. "A new rule for minimizing the number of tardy jobs in dynamic flow shops," European Journal of Operational Research, Elsevier, vol. 159(1), pages 258-263, November.
    6. Pickardt, Christoph W. & Hildebrandt, Torsten & Branke, Jürgen & Heger, Jens & Scholz-Reiter, Bernd, 2013. "Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems," International Journal of Production Economics, Elsevier, vol. 145(1), pages 67-77.
    7. Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.
    8. repec:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1090-0 is not listed on IDEAS
    9. Chen, Binchao & Matis, Timothy I., 2013. "A flexible dispatching rule for minimizing tardiness in job shop scheduling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 360-365.
    10. Jayamohan, M. S. & Rajendran, Chandrasekharan, 2004. "Development and analysis of cost-based dispatching rules for job shop scheduling," European Journal of Operational Research, Elsevier, vol. 157(2), pages 307-321, September.
    11. Branke, Juergen & Pickardt, Christoph W., 2011. "Evolutionary search for difficult problem instances to support the design of job shop dispatching rules," European Journal of Operational Research, Elsevier, vol. 212(1), pages 22-32, July.
    12. Petroni, Alberto & Rizzi, Antonio, 2002. "A fuzzy logic based methodology to rank shop floor dispatching rules," International Journal of Production Economics, Elsevier, vol. 76(1), pages 99-108, March.
    13. Agarwal, Anurag & Pirkul, Hasan & Jacob, Varghese S., 2003. "Augmented neural networks for task scheduling," European Journal of Operational Research, Elsevier, vol. 151(3), pages 481-502, December.
    14. Hübl, Alexander & Jodlbauer, Herbert & Altendorfer, Klaus, 2013. "Influence of dispatching rules on average production lead time for multi-stage production systems," International Journal of Production Economics, Elsevier, vol. 144(2), pages 479-484.
    15. Xiong, Hegen & Fan, Huali & Jiang, Guozhang & Li, Gongfa, 2017. "A simulation-based study of dispatching rules in a dynamic job shop scheduling problem with batch release and extended technical precedence constraints," European Journal of Operational Research, Elsevier, vol. 257(1), pages 13-24.
    16. Jens Heger & Torsten Hildebrandt & Bernd Scholz-Reiter, 2015. "Dispatching rule selection with Gaussian processes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 235-249, March.
    17. A. S. Xanthopoulos & D. E. Koulouriotis, 0. "Cluster analysis and neural network-based metamodeling of priority rules for dynamic sequencing," Journal of Intelligent Manufacturing, Springer, vol. 0, pages 1-23.
    18. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    19. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
    20. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Longest path analysis in networks of queues: Dynamic scheduling problems," European Journal of Operational Research, Elsevier, vol. 174(1), pages 132-149, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:116:y:1999:i:1:p:156-170. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.