IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v21y2013i1p109-132.html
   My bibliography  Save this article

MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems

Author

Listed:
  • Angel Juan
  • Javier Faulin
  • Albert Ferrer
  • Helena Lourenço
  • Barry Barrios

Abstract

This paper discusses the use of probabilistic or randomized algorithms for solving vehicle routing problems with non-smooth objective functions. Our approach employs non-uniform probability distributions to add a biased random behavior to the well-known savings heuristic. By doing so, a large set of alternative good solutions can be quickly obtained in a natural way and without complex configuration processes. Since the solution-generation process is based on the criterion of maximizing the savings, it does not need to assume any particular property of the objective function. Therefore, the procedure can be especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods—both of exact and approximate nature—may fail to reach their full potential. The results obtained so far are promising enough to suggest that the idea of using biased probability distributions to randomize classical heuristics is a powerful one that can be successfully applied in a variety of cases. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
  • Handle: RePEc:spr:topjnl:v:21:y:2013:i:1:p:109-132
    DOI: 10.1007/s11750-011-0245-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-011-0245-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-011-0245-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    2. A Poot & G Kant & A P M Wagelmans, 2002. "A savings based method for real-life vehicle routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 57-68, January.
    3. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    4. Pierre Hansen & Nenad Mladenović & Jack Brimberg & José A. Moreno Pérez, 2010. "Variable Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 61-86, Springer.
    5. Charles Fleurent & Fred Glover, 1999. "Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 198-204, May.
    6. B. Bullnheimer & R.F. Hartl & C. Strauss, 1999. "An improved Ant System algorithm for theVehicle Routing Problem," Annals of Operations Research, Springer, vol. 89(0), pages 319-328, January.
    7. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    8. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    9. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    10. Wanpracha Chaovalitwongse & Dukwon Kim & Panos M. Pardalos, 2003. "GRASP with a New Local Search Scheme for Vehicle Routing Problems with Time Windows," Journal of Combinatorial Optimization, Springer, vol. 7(2), pages 179-207, June.
    11. Helena R. Lourenço & Olivier C. Martin & Thomas Stützle, 2010. "Iterated Local Search: Framework and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 363-397, Springer.
    12. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    13. Bagirov, Adil M. & Yearwood, John, 2006. "A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 578-596, April.
    14. George Kontoravdis & Jonathan F. Bard, 1995. "A GRASP for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 10-23, February.
    15. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    16. J Bauer & T Bektaş & T G Crainic, 2010. "Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 530-542, March.
    17. U Derigs & B Li & U Vogel, 2010. "Local search-based metaheuristics for the split delivery vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1356-1364, September.
    18. K Fagerholt & G Laporte & I Norstad, 2010. "Reducing fuel emissions by optimizing speed on shipping routes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(3), pages 523-529, March.
    19. Lokketangen, Arne & Glover, Fred, 1998. "Solving zero-one mixed integer programming problems using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 624-658, April.
    20. Rita Ribeiro & Helena Ramalhinho-Lourenço, 2003. "Strategies for an integrated distribution problem," Economics Working Papers 723, Department of Economics and Business, Universitat Pompeu Fabra.
    21. Mauricio G.C. Resende & Celso C. Ribeiro, 2010. "Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 283-319, Springer.
    22. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    23. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    24. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    25. Goos Kant & Michael Jacks & Corné Aantjes, 2008. "Coca-Cola Enterprises Optimizes Vehicle Routes for Efficient Product Delivery," Interfaces, INFORMS, vol. 38(1), pages 40-50, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Dominguez & Angel Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    2. Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    3. Eskandarpour, Majid & Ouelhadj, Djamila & Hatami, Sara & Juan, Angel A. & Khosravi, Banafsheh, 2019. "Enhanced multi-directional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges," European Journal of Operational Research, Elsevier, vol. 277(2), pages 479-491.
    4. Christian Fikar & Angel A. Juan & Enoc Martinez & Patrick Hirsch, 2016. "A discrete-event driven metaheuristic for dynamic home service routing with synchronised trip sharing," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 323-340.
    5. Arnau, Quim & Barrena, Eva & Panadero, Javier & de la Torre, Rocio & Juan, Angel A., 2022. "A biased-randomized discrete-event heuristic for coordinated multi-vehicle container transport across interconnected networks," European Journal of Operational Research, Elsevier, vol. 302(1), pages 348-362.
    6. Lorena Reyes-Rubiano & Laura Calvet & Angel A. Juan & Javier Faulin & Lluc Bové, 2020. "A biased-randomized variable neighborhood search for sustainable multi-depot vehicle routing problems," Journal of Heuristics, Springer, vol. 26(3), pages 401-422, June.
    7. Jian Li & Yang Li & Panos M. Pardalos, 2016. "Multi-depot vehicle routing problem with time windows under shared depot resources," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 515-532, February.
    8. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    9. Christian Fikar & Patrick Hirsch, 2018. "Evaluation of trip and car sharing concepts for home health care services," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 78-97, June.
    10. Juan F. Gomez & Javier Panadero & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan, 2022. "A Multi-Start Biased-Randomized Algorithm for the Capacitated Dispersion Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    11. Javier Panadero & Jana Doering & Renatas Kizys & Angel A. Juan & Angels Fito, 2020. "A variable neighborhood search simheuristic for project portfolio selection under uncertainty," Journal of Heuristics, Springer, vol. 26(3), pages 353-375, June.
    12. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    2. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    3. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    4. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    5. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.
    6. Ashlea Bennett Milburn & Emre Kirac & Mina Hadianniasar, 2017. "Case Article—Growing Pains: A Case Study for Large-Scale Vehicle Routing," INFORMS Transactions on Education, INFORMS, vol. 17(2), pages 75-80, January.
    7. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    8. Zhang, Jianghua & Zhao, Yingxue & Xue, Weili & Li, Jin, 2015. "Vehicle routing problem with fuel consumption and carbon emission," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 234-242.
    9. Sleman Saliba, 2006. "Heuristics for the lexicographic max-ordering vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(3), pages 313-336, September.
    10. Gilbert Laporte, 2007. "What you should know about the vehicle routing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 811-819, December.
    11. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    12. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    13. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    14. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    15. César Rego, 1998. "A Subpath Ejection Method for the Vehicle Routing Problem," Management Science, INFORMS, vol. 44(10), pages 1447-1459, October.
    16. Fleming, Christopher L. & Griffis, Stanley E. & Bell, John E., 2013. "The effects of triangle inequality on the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 1-7.
    17. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    18. Javier Faulin & Pablo Sarobe & Jorge Simal, 2005. "The DSS LOGDIS Optimizes Delivery Routes for FRILAC’s Frozen Products," Interfaces, INFORMS, vol. 35(3), pages 202-214, June.
    19. Zhang, Zizhen & Qin, Hu & Wang, Kai & He, Huang & Liu, Tian, 2017. "Manpower allocation and vehicle routing problem in non-emergency ambulance transfer service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 45-59.
    20. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:21:y:2013:i:1:p:109-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.