IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v285y2016icp149-173.html
   My bibliography  Save this article

Ant colony optimization with clustering for solving the dynamic location routing problem

Author

Listed:
  • Gao, Shangce
  • Wang, Yirui
  • Cheng, Jiujun
  • Inazumi, Yasuhiro
  • Tang, Zheng

Abstract

Ant colony algorithm can resolve dynamic optimization problems due to its robustness and adaptation. The aim of such algorithms in dynamic environments is no longer to find an optimal solution but to trail it over time. In this paper, a clustering ant colony algorithm (KACO) with three immigrant schemes is proposed to address the dynamic location routing problem (DLRP). The DLRP is divided into two parts constituted by a location allocation problem (LAP) and a vehicles routing problem (VRP) in dynamic environments. To deal with the LAP, a K-means clustering algorithm is used to tackle the location of depots and surrounding cities in each class. Then the ant colony algorithm is utilized to handle the VRP in dynamic environments consisting of random and cyclic traffic factors. Experimental results based on different scales of DLRP instances demonstrate that the clustering algorithm can significantly improve the performance of KACO in terms of the qualities and robustness of solutions. The ultimate analyses of time complexity of all the heuristic algorithms illustrate the efficiency of KACO with immigrants, suggesting that the proposed algorithm may lead to a new technique for tracking the environmental changes by utilizing its clustering and evolutionary characteristics.

Suggested Citation

  • Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
  • Handle: RePEc:eee:apmaco:v:285:y:2016:i:c:p:149-173
    DOI: 10.1016/j.amc.2016.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316302363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    2. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1994. "A Tabu Search Heuristic for the Vehicle Routing Problem," Management Science, INFORMS, vol. 40(10), pages 1276-1290, October.
    3. B. Bullnheimer & R.F. Hartl & C. Strauss, 1999. "An improved Ant System algorithm for theVehicle Routing Problem," Annals of Operations Research, Springer, vol. 89(0), pages 319-328, January.
    4. Laporte, Gilbert & Louveaux, Francois & Mercure, Helene, 1989. "Models and exact solutions for a class of stochastic location-routing problems," European Journal of Operational Research, Elsevier, vol. 39(1), pages 71-78, March.
    5. Barreto, Sergio & Ferreira, Carlos & Paixao, Jose & Santos, Beatriz Sousa, 2007. "Using clustering analysis in a capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 968-977, June.
    6. Santos, Luís & Coutinho-Rodrigues, João & Current, John R., 2010. "An improved ant colony optimization based algorithm for the capacitated arc routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 246-266, February.
    7. Lin, C.K.Y. & Kwok, R.C.W., 2006. "Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1833-1849, December.
    8. E. Bonabeau & M. Dorigo & G. Theraulaz, 2000. "Inspiration for optimization from social insect behaviour," Nature, Nature, vol. 406(6791), pages 39-42, July.
    9. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    10. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    11. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shejun Deng & Yingying Yuan & Yong Wang & Haizhong Wang & Charles Koll, 2020. "Collaborative multicenter logistics delivery network optimization with resource sharing," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    2. Yajun Zhang & Jie Deng & Kangkang Zhu & Yongqiang Tao & Xiaolin Liu & Ligang Cui, 2021. "Location and Expansion of Electric Bus Charging Stations Based on Gridded Affinity Propagation Clustering and a Sequential Expansion Rule," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Zhang, Bo & Li, Hui & Li, Shengguo & Peng, Jin, 2018. "Sustainable multi-depot emergency facilities location-routing problem with uncertain information," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 506-520.
    4. Wang, Jianxin & Lim, Ming K. & Liu, Weihua, 2024. "Promoting intelligent IoT-driven logistics through integrating dynamic demand and sustainable logistics operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    5. Hu, Yucong & Liu, Qingyang & Li, Sitong & Wu, Weitiao, 2025. "Robust emergency logistics network design for pandemic emergencies under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    6. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    7. Sina Abolhoseini & Ali Asghar Alesheikh, 2021. "Dynamic routing with ant system and memory-based decision-making process," Environment Systems and Decisions, Springer, vol. 41(2), pages 198-211, June.
    8. Shaghaghi, Saba & Bonakdari, Hossein & Gholami, Azadeh & Ebtehaj, Isa & Zeinolabedini, Maryam, 2017. "Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 271-286.
    9. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
    10. Maskooki, Alaleh & Deb, Kalyanmoy & Kallio, Markku, 2022. "A customized genetic algorithm for bi-objective routing in a dynamic network," European Journal of Operational Research, Elsevier, vol. 297(2), pages 615-629.
    11. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    12. Jaller, Miguel & Pahwa, Anmol, 2023. "Coping with the Rise of E-commerce Generated Home Deliveries through Innovative Last-mile Technologies and Strategies," Institute of Transportation Studies, Working Paper Series qt5t76x0kh, Institute of Transportation Studies, UC Davis.
    13. Wan Fang & Guo Haixiang & Li Jinling & Gu Mingyun & Pan Wenwen, 2021. "Multi-objective Emergency Scheduling for Geological Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1323-1358, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    2. Walid Klibi & Francis Lasalle & Alain Martel & Soumia Ichoua, 2010. "The Stochastic Multiperiod Location Transportation Problem," Transportation Science, INFORMS, vol. 44(2), pages 221-237, May.
    3. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    4. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    5. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    6. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    7. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    8. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    9. Kelley, Jason & Kuby, Michael & Sierra, Rodrigo, 2013. "Transportation network optimization for the movement of indigenous goods in Amazonian Ecuador," Journal of Transport Geography, Elsevier, vol. 28(C), pages 89-100.
    10. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    11. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    12. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    13. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    14. Nasrin Asgari & Mohsen Rajabi & Masoumeh Jamshidi & Maryam Khatami & Reza Zanjirani Farahani, 2017. "A memetic algorithm for a multi-objective obnoxious waste location-routing problem: a case study," Annals of Operations Research, Springer, vol. 250(2), pages 279-308, March.
    15. Sleman Saliba, 2006. "Heuristics for the lexicographic max-ordering vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(3), pages 313-336, September.
    16. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    17. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    18. Cortes, Juan David & Suzuki, Yoshinori, 2020. "Vehicle Routing with Shipment Consolidation," International Journal of Production Economics, Elsevier, vol. 227(C).
    19. Sumanta Basu & Ghosh, Diptesh, 2008. "A review of the Tabu Search Literature on Traveling Salesman Problems," IIMA Working Papers WP2008-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    20. Roberto Baldacci & Aristide Mingozzi & Roberto Wolfler Calvo, 2011. "An Exact Method for the Capacitated Location-Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1284-1296, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:285:y:2016:i:c:p:149-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.