Robust emergency logistics network design for pandemic emergencies under demand uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tre.2024.103957
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wu, Weitiao & Li, Yu, 2024. "Pareto truck fleet sizing for bike relocation with stochastic demand: Risk-averse multi-stage approximate stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
- Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
- Tinggui Chen & Shiwen Wu & Jianjun Yang & Guodong Cong, 2019. "Risk Propagation Model and Its Simulation of Emergency Logistics Network Based on Material Reliability," IJERPH, MDPI, vol. 16(23), pages 1-18, November.
- Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
- Alain, Guinet & Angel, Ruiz, 2016. "Modeling the logistics response to a bioterrorist anthrax attackAuthor-Name: Wanying, Chen," European Journal of Operational Research, Elsevier, vol. 254(2), pages 458-471.
- Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
- Rieck, Julia & Ehrenberg, Carsten & Zimmermann, Jürgen, 2014. "Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery," European Journal of Operational Research, Elsevier, vol. 236(3), pages 863-878.
- Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
- Wu, Weitiao & Li, Yu, 2024. "The multi-compartment truck and trailer petrol station replenishment problem with domino hazard risks," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
- A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
- Wang, Yong & Wei, Zikai & Luo, Siyu & Zhou, Jingxin & Zhen, Lu, 2024. "Collaboration and resource sharing in the multidepot time-dependent vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
- Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
- Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
- Salhi, Said & Rand, Graham K., 1989. "The effect of ignoring routes when locating depots," European Journal of Operational Research, Elsevier, vol. 39(2), pages 150-156, March.
- Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
- Gustavo Souto dos Santos Diz & Silvio Hamacher & Fabricio Oliveira, 2019. "A robust optimization model for the maritime inventory routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 675-701, September.
- Veenstra, Marjolein & Roodbergen, Kees Jan & Coelho, Leandro C. & Zhu, Stuart X., 2018. "A simultaneous facility location and vehicle routing problem arising in health care logistics in the Netherlands," European Journal of Operational Research, Elsevier, vol. 268(2), pages 703-715.
- Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
- Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
- Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
- Hof, Julian & Schneider, Michael & Goeke, Dominik, 2017. "Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle-routing problems with intermediate stops," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 102-112.
- Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
- Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
- Alfredo Moreno & Pedro Munari & Douglas Alem, 2024. "Crew Scheduling and Routing Problem in Road Restoration via Branch-and-Price Algorithms," Transportation Science, INFORMS, vol. 58(4), pages 801-820, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hongbin Yu & An Shi & Qing Liu & Jianhua Liu & Huiyang Hu & Zhilong Chen, 2025. "Immune-Inspired Multi-Objective PSO Algorithm for Optimizing Underground Logistics Network Layout with Uncertainties: Beijing Case Study," Sustainability, MDPI, vol. 17(10), pages 1-34, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
- Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Meng, Lingpeng & Wang, Xudong & He, Junliang & Han, Chuanfeng & Hu, Shaolong, 2023. "A two-stage chance constrained stochastic programming model for emergency supply distribution considering dynamic uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
- Wang, Jing & Cai, Jianping & Yue, Xiaohang & Suresh, Nallan C., 2021. "Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
- Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
- Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
- Khanchehzarrin, Saeed & Ghaebi Panah, Mona & Mahdavi-Amiri, Nezam & Shiripour, Saber, 2022. "A bi-level multi-objective location-routing optimization model for disaster relief operations considering public donations," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
- Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
- Amin Amani, Mohammad & Asumadu Sarkodie, Samuel & Sheu, Jiuh-Biing & Mahdi Nasiri, Mohammad & Tavakkoli-Moghaddam, Reza, 2025. "A data-driven hybrid scenario-based robust optimization method for relief logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
- Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
- Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
- Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
- Jianhui Du & Peng Wu & Yiqing Wang & Dan Yang, 2023. "Multi-stage humanitarian emergency logistics: robust decisions in uncertain environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 899-922, January.
- Seyed Reza Abazari & Fariborz Jolai & Amir Aghsami, 2022. "Designing a humanitarian relief network considering governmental and non-governmental operations under uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1430-1452, June.
- Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
- Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
- Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
- Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
- Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
More about this item
Keywords
Pandemic emergencies; Emergency logistics; Multi-objective robust optimization; Uncertainty; Gray wolf optimizer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:196:y:2025:i:c:s1366554524005489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.