IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v174y2023ics0191261523001042.html
   My bibliography  Save this article

Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics

Author

Listed:
  • Yin, Yunqiang
  • Yang, Yongjian
  • Yu, Yugang
  • Wang, Dujuan
  • Cheng, T.C.E.

Abstract

Resource transport in the aftermath of disasters is critical, yet in the absence of sufficient historical data or accurate forecasting approaches, the development of resource transport strategies often faces the challenge of dealing with uncertainty, especially uncertainties in demand and travel time. In this paper we investigate the vehicle routing problem with drones under uncertain demands and truck travel times. Specifically, there is a set of trucks and drones (each truck is associated with a drone) collaborating to transport relief resources to the affected areas, where a drone can be launched from its associated truck at a node, independently transporting relief resources to one or more of the affected areas, and returning to the truck at another node along the truck route. For this problem, we present a tailored robust optimization model based on the well-known budgeted uncertainty set, and develop an enhanced branch-and-price-and-cut algorithm incorporating a bounded bidirectional labelling algorithm to solve the pricing problem, which can be modelled as a robust resource-constrained vehicle and drone synthetic shortest path problem. To enhance the performance of the algorithm, we employ subset-row inequalities to tighten the lower bound and incorporate some enhancement strategies to quickly solve the pricing problem. We perform extensive numerical studies to assess the performance of the developed algorithm, discuss the benefits of considering uncertainty and robustness, and analyse the impacts of key model parameters on the optimal solution. We also evaluate the benefits of the truck–drone collaborative transport mode over the truck-only transport mode through a real case study of the 2008 earthquake in Wenchuan, China.

Suggested Citation

  • Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:transb:v:174:y:2023:i:c:s0191261523001042
    DOI: 10.1016/j.trb.2023.102781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruth Banomyong & Paitoon Varadejsatitwong & Richard Oloruntoba, 2019. "A systematic review of humanitarian operations, humanitarian logistics and humanitarian supply chain performance literature 2005 to 2016," Annals of Operations Research, Springer, vol. 283(1), pages 71-86, December.
    2. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    3. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    4. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    6. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    7. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    10. Lu Zhen & Jiajing Gao & Zheyi Tan & Shuaian Wang & Roberto Baldacci, 2023. "Branch-price-and-cut for trucks and drones cooperative delivery," IISE Transactions, Taylor & Francis Journals, vol. 55(3), pages 271-287, March.
    11. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    12. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    13. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    14. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    15. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    16. Özdamar, Linet & Demir, Onur, 2012. "A hierarchical clustering and routing procedure for large scale disaster relief logistics planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 591-602.
    17. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    18. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    19. Yinglei Li & Sung Hoon Chung, 2019. "Disaster relief routing under uncertainty: A robust optimization approach," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 869-886, August.
    20. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    21. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    22. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    23. Shahparvari, Shahrooz & Abbasi, Babak, 2017. "Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 32-49.
    24. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    25. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    26. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    27. Roberto Roberti & Aristide Mingozzi, 2014. "Dynamic ng-Path Relaxation for the Delivery Man Problem," Transportation Science, INFORMS, vol. 48(3), pages 413-424, August.
    28. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    29. Mads Jepsen & Bjørn Petersen & Simon Spoorendonk & David Pisinger, 2008. "Subset-Row Inequalities Applied to the Vehicle-Routing Problem with Time Windows," Operations Research, INFORMS, vol. 56(2), pages 497-511, April.
    30. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    31. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    32. Ahmadi, Morteza & Seifi, Abbas & Tootooni, Behnam, 2015. "A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 145-163.
    33. Qingyi Wang & Xiaofeng Nie, 2019. "A stochastic programming model for emergency supply planning considering traffic congestion," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 910-920, August.
    34. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    35. Claudia Archetti & Luca Bertazzi & Alain Hertz & M. Grazia Speranza, 2012. "A Hybrid Heuristic for an Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 101-116, February.
    36. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    37. Kangzhou Wang & Biao Yuan & Mengting Zhao & Yuwei Lu, 2020. "Cooperative route planning for the drone and truck in delivery services: A bi-objective optimisation approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(10), pages 1657-1674, October.
    38. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    39. Moshe Dror, 1994. "Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW," Operations Research, INFORMS, vol. 42(5), pages 977-978, October.
    40. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Zhu & Zhu, Ning & Zhang, Guowei & Yang, Yuance & Liu, Zhaocai & Ke, Ginger Y., 2024. "Data-driven drone pre-positioning for traffic accident rapid assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    3. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yunqiang & Li, Dongwei & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Wang, Sutong, 2023. "A branch-and-price-and-cut algorithm for the truck-based drone delivery routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1125-1144.
    2. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    5. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Meng, Shanshan & Chen, Yanru & Li, Dong, 2024. "The multi-visit drone-assisted pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 314(2), pages 685-702.
    8. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    9. Qinxiao Yu & Chun Cheng & Ning Zhu, 2022. "Robust Team Orienteering Problem with Decreasing Profits," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3215-3233, November.
    10. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    12. Jeanette Schmidt & Christian Tilk & Stefan Irnich, 2023. "Exact Solution of the Vehicle Routing Problem With Drones," Working Papers 2311, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    14. Christian Tilk, 2016. "Branch-and-Price-and-Cut for the Vehicle Routing and Truck Driver Scheduling Problem," Working Papers 1616, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    16. Miao Yu & Viswanath Nagarajan & Siqian Shen, 2022. "Improving Column Generation for Vehicle Routing Problems via Random Coloring and Parallelization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 953-973, March.
    17. Asvin Goel & Stefan Irnich, 2017. "An Exact Method for Vehicle Routing and Truck Driver Scheduling Problems," Transportation Science, INFORMS, vol. 51(2), pages 737-754, May.
    18. Yiming Liu & Yang Yu & Yu Zhang & Roberto Baldacci & Jiafu Tang & Xinggang Luo & Wei Sun, 2023. "Branch-Cut-and-Price for the Time-Dependent Green Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 14-30, January.
    19. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    20. Hoogendoorn, Y.N. & Dalmeijer, K., 2021. "Resource-robust valid inequalities for set covering and set partitioning models," Econometric Institute Research Papers EI 2020-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:174:y:2023:i:c:s0191261523001042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.