IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i4p965-981.html
   My bibliography  Save this article

Optimization Approaches for the Traveling Salesman Problem with Drone

Author

Listed:
  • Niels Agatz

    (Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands)

  • Paul Bouman

    (Econometric Institute, Erasmus University, 3062 PA Rotterdam, Netherlands)

  • Marie Schmidt

    (Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands)

Abstract

The fast and cost-efficient home delivery of goods ordered online is logistically challenging. Many companies are looking for new ways to cross the last mile to their customers. One technology-enabled opportunity that recently has received much attention is the use of drones to support deliveries. An innovative last-mile delivery concept in which a truck collaborates with a drone to make deliveries gives rise to a new variant of the traveling salesman problem (TSP) that we call the TSP with drone. In this paper, we model this problem as an integer program and develop several fast route-first, cluster-second heuristics based on local search and dynamic programming. We prove worst-case approximation ratios for the heuristics and test their performance by comparing the solutions to the optimal solutions for small instances. In addition, we apply our heuristics to several artificial instances with different characteristics and sizes. Our experiments show that substantial savings are possible with this concept compared to truck-only delivery.

Suggested Citation

  • Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:965-981
    DOI: 10.1287/trsc.2017.0791
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0791
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    2. Behnam Behdani & J. Cole Smith, 2014. "An Integer-Programming-Based Approach to the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 415-432, August.
    3. José Manuel Belenguer & Enrique Benavent & Antonio Martínez & Christian Prins & Caroline Prodhon & Juan G. Villegas, 2016. "A Branch-and-Cut Algorithm for the Single Truck and Trailer Routing Problem with Satellite Depots," Transportation Science, INFORMS, vol. 50(2), pages 735-749, May.
    4. John R. Current & David A. Schilling, 1989. "The Covering Salesman Problem," Transportation Science, INFORMS, vol. 23(3), pages 208-213, August.
    5. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    6. Lanah Evers & Twan Dollevoet & Ana Barros & Herman Monsuur, 2014. "Robust UAV mission planning," Annals of Operations Research, Springer, vol. 222(1), pages 293-315, November.
    7. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    8. Beasley, JE, 1983. "Route first--Cluster second methods for vehicle routing," Omega, Elsevier, vol. 11(4), pages 403-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agatz, N.A.H. & Bouman, P.C. & Schmidt, M.E., 2016. "Optimization Approaches for the Traveling Salesman Problem with Drone," ERIM Report Series Research in Management ERS-2015-011-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Glock, Katharina & Meyer, Anne, 2023. "Spatial coverage in routing and path planning problems," European Journal of Operational Research, Elsevier, vol. 305(1), pages 1-20.
    3. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    4. Elfe Buluc & Meltem Peker & Bahar Y. Kara & Manoj Dora, 2022. "Covering vehicle routing problem: application for mobile child friendly spaces for refugees," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 461-484, June.
    5. Francesco Carrabs & Carmine Cerrone & Raffaele Cerulli & Bruce Golden, 2020. "An Adaptive Heuristic Approach to Compute Upper and Lower Bounds for the Close-Enough Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1030-1048, October.
    6. Alexandra Anderluh & Vera C. Hemmelmayr & Pamela C. Nolz, 2017. "Synchronizing vans and cargo bikes in a city distribution network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 345-376, June.
    7. Glize, Estèle & Roberti, Roberto & Jozefowiez, Nicolas & Ngueveu, Sandra Ulrich, 2020. "Exact methods for mono-objective and Bi-Objective Multi-Vehicle Covering Tour Problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 812-824.
    8. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    9. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    10. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    11. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    12. Keisuke Murakami, 2018. "Iterative Column Generation Algorithm for Generalized Multi-Vehicle Covering Tour Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-22, August.
    13. Leticia Vargas & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2017. "A dynamic programming operator for tour location problems applied to the covering tour problem," Journal of Heuristics, Springer, vol. 23(1), pages 53-80, February.
    14. Di Placido, Andrea & Archetti, Claudia & Cerrone, Carmine & Golden, Bruce, 2023. "The generalized close enough traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 310(3), pages 974-991.
    15. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    16. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    17. Huili Zhang & Yinfeng Xu, 2018. "Online covering salesman problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 941-954, April.
    18. Eduardo Álvarez-Miranda & Markus Sinnl, 2020. "A branch-and-cut algorithm for the maximum covering cycle problem," Annals of Operations Research, Springer, vol. 284(2), pages 487-499, January.
    19. Anupam Mukherjee & Partha Sarathi Barma & Joydeep Dutta & Goutam Panigrahi & Samarjit Kar & Manoranjan Maiti, 2022. "A multi-objective antlion optimizer for the ring tree problem with secondary sub-depots," Operational Research, Springer, vol. 22(3), pages 1813-1851, July.
    20. Edward Lam & Pascal Van Hentenryck & Phil Kilby, 2020. "Joint Vehicle and Crew Routing and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 488-511, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:965-981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.