IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v183y2024ics1366554524000425.html
   My bibliography  Save this article

Data-driven drone pre-positioning for traffic accident rapid assessment

Author

Listed:
  • Meng, Zhu
  • Zhu, Ning
  • Zhang, Guowei
  • Yang, Yuance
  • Liu, Zhaocai
  • Ke, Ginger Y.

Abstract

A rise in traffic accidents has led to both traffic congestion and subsequent secondary accidents. Effectively addressing this issue requires rapid accident investigation and management. In this paper, we aim to improve the efficiency of traffic accident assessment and investigation with the aid of drone technologies. Our approach involves strategically pre-positioning drones, enabling traffic supervisory agencies to dispatch drones immediately upon receiving an accident report. Methodology-wise, we present a data-driven robust stochastic optimization (RSO) model, which encapsulates the uncertainty of traffic accidents within a scenario-wise Wasserstein ambiguity set. To the best of our knowledge, this is the first study that incorporates covariates, i.e., weather conditions, into the Wasserstein ambiguity set with the CVaR metric. We demonstrate that the proposed RSO model can be reformulated into a mixed-integer programming model, allowing an efficient solution approach. Via a real-world dataset of London traffic accidents, we validate the practical applicability of the RSO model. Across various parameter settings, our RSO model exhibits superior out-of-sample performance compared with various benchmark models. The numerical results yield valuable insights for traffic supervisory agencies.

Suggested Citation

  • Meng, Zhu & Zhu, Ning & Zhang, Guowei & Yang, Yuance & Liu, Zhaocai & Ke, Ginger Y., 2024. "Data-driven drone pre-positioning for traffic accident rapid assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000425
    DOI: 10.1016/j.tre.2024.103452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524000425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    2. Outay, Fatma & Mengash, Hanan Abdullah & Adnan, Muhammad, 2020. "Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 116-129.
    3. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    4. Zhaowei Hao & Long He & Zhenyu Hu & Jun Jiang, 2020. "Robust Vehicle Pre‐Allocation with Uncertain Covariates," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 955-972, April.
    5. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    6. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    7. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    8. Li, Yuchen & Liu, Yang, 2023. "Distributionally robust optimization for collaborative emergency response network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    9. Ajay Bhaskarabhatla & Luis Cabral & Deepak Hegde & Thomas Peeters, 2021. "Are Inventors or Firms the Engines of Innovation?," Management Science, INFORMS, vol. 67(6), pages 3899-3920, June.
    10. John Gunnar Carlsson & Erick Delage, 2013. "Robust Partitioning for Stochastic Multivehicle Routing," Operations Research, INFORMS, vol. 61(3), pages 727-744, June.
    11. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    12. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    13. Zheng, Wei & Li, Bo & Song, Dongping & Li, Yanran, 2023. "Innovative development strategy of a risk-averse firm considering product unreliability under competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    14. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    15. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    16. Espadaler-Clapés, Jasso & Barmpounakis, Emmanouil & Geroliminis, Nikolas, 2023. "Empirical investigation of lane usage, lane changing and lane choice phenomena in a multimodal urban arterial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    17. Cihan Tugrul Cicek & Zuo-Jun Max Shen & Hakan Gultekin & Bulent Tavli, 2021. "3-D Dynamic UAV Base Station Location Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 839-860, July.
    18. Robert Jacobson & Natalie Mizik, 2009. "The Financial Markets and Customer Satisfaction: Reexamining Possible Financial Market Mispricing of Customer Satisfaction," Marketing Science, INFORMS, vol. 28(5), pages 810-819, 09-10.
    19. Zhao, Yue & Chen, Zhi & Lim, Andrew & Zhang, Zhenzhen, 2022. "Vessel deployment with limited information: Distributionally robust chance constrained models," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 197-217.
    20. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    21. Ouyang, Pengying & Liu, Pan & Guo, Yanyong & Chen, Kequan, 2023. "Effects of configuration elements and traffic flow conditions on Lane-Changing rates at the weaving segments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    22. Angelica Gianfreda & Derek Bunn, 2018. "A Stochastic Latent Moment Model for Electricity Price Formation," BEMPS - Bozen Economics & Management Paper Series BEMPS46, Faculty of Economics and Management at the Free University of Bozen.
    23. Li, Runjie & Cui, Zheng & Kuo, Yong-Hong & Zhang, Lianmin, 2023. "Scenario-based Distributionally Robust Optimization for the Stochastic Inventory Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    24. Cao, Yunzhi & Zhu, Xiaoyan & Yan, Houmin, 2022. "Data-driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    25. Bigazzi, Alexander Y. & Figliozzi, Miguel A., 2013. "Marginal costs of freeway traffic congestion with on-road pollution exposure externality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 12-24.
    26. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    27. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    28. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    29. Zhu, Ning & Fu, Chenyi & Ma, Shoufeng, 2018. "Data-driven distributionally robust optimization approach for reliable travel-time-information-gain-oriented traffic sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 91-120.
    30. Ghaffarinasab, Nader & Çavuş, Özlem & Kara, Bahar Y., 2023. "A mean-CVaR approach to the risk-averse single allocation hub location problem with flow-dependent economies of scale," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 32-53.
    31. Tao, Liangyan & Liu, Sifeng & Xie, Naiming & Javed, Saad Ahmed, 2021. "Optimal position of supply chain delivery window with risk-averse suppliers: A CVaR optimization approach," International Journal of Production Economics, Elsevier, vol. 232(C).
    32. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    2. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).
    3. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    4. Yu, Xinyao & Ma, Shoufeng & Zhu, Ning & Lam, William H.K. & Fu, Hao, 2023. "Ensuring the robustness of link flow observation systems in sensor failure events," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    5. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.
    6. Ren, Ke & Bidkhori, Hoda, 2023. "A study of data-driven distributionally robust optimization with incomplete joint data under finite support," European Journal of Operational Research, Elsevier, vol. 305(2), pages 754-765.
    7. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    8. Yu Wang & Yu Zhang & Minglong Zhou & Jiafu Tang, 2023. "Feature‐driven robust surgery scheduling," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1921-1938, June.
    9. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    10. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.
    11. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.
    12. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    13. Adrián Esteban-Pérez & Juan M. Morales, 2022. "Partition-based distributionally robust optimization via optimal transport with order cone constraints," 4OR, Springer, vol. 20(3), pages 465-497, September.
    14. Aakil M. Caunhye & Douglas Alem, 2023. "Practicable robust stochastic optimization under divergence measures with an application to equitable humanitarian response planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 759-806, September.
    15. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    16. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    17. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    18. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    19. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    20. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:183:y:2024:i:c:s1366554524000425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.