IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v198y2025ics136655452500095x.html
   My bibliography  Save this article

A robust stochastic approach to relief pre-positioning for earthquake response under event-wise uncertainties

Author

Listed:
  • Yu, Xinyao
  • Chen, Jie
  • Zhu, Ning
  • Ma, Shoufeng
  • Peng, Binbin

Abstract

The unpredictable and sudden devastation caused by earthquakes demands comprehensive disaster preparation and response operations. In this study, we propose a two-stage robust stochastic optimization model for relief pre-positioning, incorporating post-disaster relief shipment considerations under uncertain parameters that modeled in an ad hoc event-wise uncertainty set, accounting for uncertainties in earthquake occurrence and the ranges of event-associated parameters (e.g., supply, demand, shipment capacity). This approach effectively captures the epicenter-sourced nature of earthquakes, simplifying the challenge of precise parameter estimation and enabling adaptive decision-making in post-disaster operations. We further analyze the possible realizations of uncertain parameters within the event-wise uncertainty set, providing managerial insights into the impact of unused supplies on decision-makers’ attitudes toward different realizations of uncertain parameters Based on these analytical results, we develop an enumeration-based column-and-constraint generation algorithm to solve the model exactly. The model is illustrated through a case study of the Yushu earthquake. Numerical experiments show that our model outperforms benchmark methods such as stochastic programming and robust optimization. Sensitivity analysis provides additional managerial insights into the robustness of our approach under inaccurate estimations, highlighting the significant impact of handling costs for unused supplies on relief pre-positioning decisions.

Suggested Citation

  • Yu, Xinyao & Chen, Jie & Zhu, Ning & Ma, Shoufeng & Peng, Binbin, 2025. "A robust stochastic approach to relief pre-positioning for earthquake response under event-wise uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:transe:v:198:y:2025:i:c:s136655452500095x
    DOI: 10.1016/j.tre.2025.104054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452500095X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    3. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    4. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    5. Jyotirmoy Dalal & Halit Üster, 2021. "Robust Emergency Relief Supply Planning for Foreseen Disasters Under Evacuation-Side Uncertainty," Transportation Science, INFORMS, vol. 55(3), pages 791-813, May.
    6. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    7. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    8. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    9. Erbeyoğlu, Gökalp & Bilge, Ümit, 2020. "A robust disaster preparedness model for effective and fair disaster response," European Journal of Operational Research, Elsevier, vol. 280(2), pages 479-494.
    10. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    11. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    12. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    13. Nilay Noyan & Gökçe Kahvecioğlu, 2018. "Stochastic last mile relief network design with resource reallocation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 187-231, January.
    14. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    15. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2023. "Distributionally robust chance-constrained programming for multi-period emergency resource allocation and vehicle routing in disaster response operations," Omega, Elsevier, vol. 120(C).
    16. Wenjun Ni & Jia Shu & Miao Song, 2018. "Location and Emergency Inventory Pre†Positioning for Disaster Response Operations: Min†Max Robust Model and a Case Study of Yushu Earthquake," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 160-183, January.
    17. Hongming Li & Erick Delage & Ning Zhu & Michael Pinedo & Shoufeng Ma, 2024. "Distributional Robustness and Inequity Mitigation in Disaster Preparedness of Humanitarian Operations," Manufacturing & Service Operations Management, INFORMS, vol. 26(1), pages 197-214, January.
    18. Noham, Reut & Tzur, Michal, 2018. "Designing humanitarian supply chains by incorporating actual post-disaster decisions," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1064-1077.
    19. Yusen Ye & Wen Jiao & Hong Yan, 2020. "Managing Relief Inventories Responding to Natural Disasters: Gaps Between Practice and Literature," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 807-832, April.
    20. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    21. Nilay Noyan & Burcu Balcik & Semih Atakan, 2016. "A Stochastic Optimization Model for Designing Last Mile Relief Networks," Transportation Science, INFORMS, vol. 50(3), pages 1092-1113, August.
    22. Jyotirmoy Dalal & Halit Üster, 2018. "Combining Worst Case and Average Case Considerations in an Integrated Emergency Response Network Design Problem," Transportation Science, INFORMS, vol. 52(1), pages 171-188, January.
    23. Duo Wang & Kai Yang & Lixing Yang, 2023. "Risk-averse two-stage distributionally robust optimisation for logistics planning in disaster relief management," International Journal of Production Research, Taylor & Francis Journals, vol. 61(2), pages 668-691, January.
    24. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    25. Jon M. Stauffer & Subodha Kumar, 2021. "Impact of Incorporating Returns into Pre‐Disaster Deployments for Rapid‐Onset Predictable Disasters," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 451-474, February.
    26. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    27. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    28. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    29. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guowei & Jia, Ning & Zhu, Ning & He, Long & Adulyasak, Yossiri, 2023. "Humanitarian transportation network design via two-stage distributionally robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    2. Wang, Duo & Yang, Kai & Yuen, Kum Fai & Yang, Lixing & Dong, Jianjun, 2024. "Hybrid risk-averse location-inventory-allocation with secondary disaster considerations in disaster relief logistics: A distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    4. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    5. Gao, Yingying & Ding, Xianghai & Yu, Wuyang, 2024. "Distributional robustness based on Wasserstein-metric approach for humanitarian logistics problem under road disruptions," Operations Research Perspectives, Elsevier, vol. 13(C).
    6. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    7. Zhang, Yuwei & Li, Zhenping & Zhao, Yuwei, 2023. "Multi-mitigation strategies in medical supplies for epidemic outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    8. Sun, Peng & Zhao, Dongpan & Chen, Qingxin & Yu, Xinyao & Zhu, Ning, 2025. "Distributionally robust optimization for pre-disaster facility location problem with 3D printing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    9. Amin Amani, Mohammad & Asumadu Sarkodie, Samuel & Sheu, Jiuh-Biing & Mahdi Nasiri, Mohammad & Tavakkoli-Moghaddam, Reza, 2025. "A data-driven hybrid scenario-based robust optimization method for relief logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
    10. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    11. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    12. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    13. Wang, Duo & Yang, Kai & Yang, Lixing & Dong, Jianjun, 2023. "Two-stage distributionally robust optimization for disaster relief logistics under option contract and demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    14. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    15. Yang, Wenjie & Caunhye, Aakil M. & Zhuo, Maolin & Wang, Qingyi, 2024. "Integrated planning of emergency supply pre-positioning and victim evacuation," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    16. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).
    17. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    18. Zhenlong Jiang & Ran Ji & Zhijie Sasha Dong, 2023. "A distributionally robust chance-constrained model for humanitarian relief network design," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1153-1195, December.
    19. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    20. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:198:y:2025:i:c:s136655452500095x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.