IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v157y2022ics1366554521003355.html
   My bibliography  Save this article

A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions

Author

Listed:
  • Sun, Huali
  • Li, Jiamei
  • Wang, Tingsong
  • Xue, Yaofeng

Abstract

Humanitarian aid in disasters is critical to saving lives and alleviating human suffering. This paper presents a novel scenario-based robust bi-objective optimization model that integrates medical facility location, casualty transportation, and relief commodity allocation considering triage. The proposed model aims to minimize the total deprivation cost of casualties due to the delayed access to medical services and the total operation cost. Following a set of disruption scenarios, the scenario-based robust approach is applied to protect solutions against the risk of disruptions in temporary medical centers. Considering the uncertain number of casualties under each scenario, the robust method which denotes the uncertainty as interval data is adopted. We utilize the ε-constraint method to deal with the bi-objective model. Additionally, we consider real case studies of the Wenchuan Earthquake to validate the proposed model. Several numerical experiments are conducted to examine the effects of uncertainties and capacities of medical facilities on the main objective value. The performance of considering the uncertainty and facility disruption is also discussed.

Suggested Citation

  • Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:transe:v:157:y:2022:i:c:s1366554521003355
    DOI: 10.1016/j.tre.2021.102578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521003355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
    2. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    3. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    4. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    5. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Kasin Ransikarbum & Scott J. Mason, 2016. "Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 49-68, January.
    8. Yinglei Li & Sung Hoon Chung, 2019. "Disaster relief routing under uncertainty: A robust optimization approach," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 869-886, August.
    9. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(1), pages 1-2, May.
    10. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    11. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    12. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    13. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    14. Wenjun Ni & Jia Shu & Miao Song, 2018. "Location and Emergency Inventory Pre†Positioning for Disaster Response Operations: Min†Max Robust Model and a Case Study of Yushu Earthquake," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 160-183, January.
    15. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. Qing-Mi Hu & Laijun Zhao & Huiyong Li & Rongbing Huang, 2019. "Integrated design of emergency shelter and medical networks considering diurnal population shifts in urban areas," IISE Transactions, Taylor & Francis Journals, vol. 51(6), pages 614-637, June.
    17. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    18. Martin K. Starr & Luk N. Van Wassenhove, 2014. "Introduction to the Special Issue on Humanitarian Operations and Crisis Management," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 925-937, June.
    19. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    20. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    21. Baharmand, Hossein & Comes, Tina & Lauras, Matthieu, 2019. "Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 86-110.
    22. Halit Üster & Jyotirmoy Dalal, 2017. "Strategic emergency preparedness network design integrating supply and demand sides in a multi-objective approach," IISE Transactions, Taylor & Francis Journals, vol. 49(4), pages 395-413, April.
    23. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    24. Eko Setiawan & Jiyin Liu & Alan French, 2019. "Resource location for relief distribution and victim evacuation after a sudden-onset disaster," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 830-846, August.
    25. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    26. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(2), pages 109-110, August.
    27. Caunhye, Aakil M. & Li, Mingzhe & Nie, Xiaofeng, 2015. "A location-allocation model for casualty response planning during catastrophic radiological incidents," Socio-Economic Planning Sciences, Elsevier, vol. 50(C), pages 32-44.
    28. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    29. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    30. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    31. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    32. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    33. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2020. "Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake)," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    34. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    35. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.
    36. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    37. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    38. Cotes, Nathalie & Cantillo, Victor, 2019. "Including deprivation costs in facility location models for humanitarian relief logistics," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 89-100.
    39. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    40. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    41. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    42. Mohsen Yahyaei & Ali Bozorgi-Amiri, 2019. "Robust reliable humanitarian relief network design: an integration of shelter and supply facility location," Annals of Operations Research, Springer, vol. 283(1), pages 897-916, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Deng, Menghua & Bian, Bomin & Zhou, Yanlin & Ding, Jianpeng, 2023. "Distributionally robust production and replenishment problem for hydrogen supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    3. Yu, Wuyang, 2023. "A robust model for emergency supplies prepositioning and transportation considering road disruptions," Operations Research Perspectives, Elsevier, vol. 10(C).
    4. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    5. Liang, Siqi & Bai, Xuejie & Li, Yongli & Xin, Hening, 2023. "Model and solution of sustainable bi-level emergency commodity allocation based on type-2 fuzzy theory," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    6. Ghavamifar, Ali & Torabi, S. Ali & Moshtari, Mohammad, 2022. "A hybrid relief procurement contract for humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Wu, Lingxiao & Li, Ang, 2024. "Integrated optimisation of strategic planning and service operations for urban air mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    8. Meng, Lingpeng & Wang, Xudong & He, Junliang & Han, Chuanfeng & Hu, Shaolong, 2023. "A two-stage chance constrained stochastic programming model for emergency supply distribution considering dynamic uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    10. Zhengying Cai & Yuanyuan Yang & Xiangling Zhang & Yan Zhou, 2022. "Design a Robust Logistics Network with an Artificial Physarum Swarm Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    11. Jafarzadeh-Ghoushchi, Saeid & Asghari, Mohammad & Mardani, Abbas & Simic, Vladimir & Tirkolaee, Erfan Babaee, 2023. "Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    12. Lin Chen & Ting Dong & Jin Peng & Dan Ralescu, 2023. "Uncertainty Analysis and Optimization Modeling with Application to Supply Chain Management: A Systematic Review," Mathematics, MDPI, vol. 11(11), pages 1-45, May.
    13. Timperio, Giuseppe & Kundu, Tanmoy & Klumpp, Matthias & de Souza, Robert & Loh, Xiu Hui & Goh, Kelvin, 2022. "Beneficiary-centric decision support framework for enhanced resource coordination in humanitarian logistics: A case study from ASEAN," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    14. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    15. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    3. Seyed Reza Abazari & Fariborz Jolai & Amir Aghsami, 2022. "Designing a humanitarian relief network considering governmental and non-governmental operations under uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1430-1452, June.
    4. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    5. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    6. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    7. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    8. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    10. Wang, Jing & Cai, Jianping & Yue, Xiaohang & Suresh, Nallan C., 2021. "Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    11. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    12. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    13. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    14. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    15. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    16. Dayanna Rodrigues da Cunha Nunes & Orivalde Soares da Silva Júnior & Renata Albergaria de Mello Bandeira & Yesus Emmanuel Medeiros Vieira, 2023. "A Robust Stochastic Programming Model for the Well Location Problem: The Case of The Brazilian Northeast Region," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    17. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    18. Moddassir Khan Nayeem & Gyu M. Lee, 2021. "Robust Design of Relief Distribution Networks Considering Uncertainty," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    19. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    20. Hasti Seraji & Reza Tavakkoli-Moghaddam & Sobhan Asian & Harpreet Kaur, 2022. "An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 211-257, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:157:y:2022:i:c:s1366554521003355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.