IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i2p437-453.html
   My bibliography  Save this article

A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events

Author

Listed:
  • Aakil M. Caunhye

    (Singapore-ETH Center, National University of Singapore and ETH Zurich, Singapore 138602)

  • Xiaofeng Nie

    (Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, New York 14260)

Abstract

Catastrophic health events are natural or man-made incidents that create casualties in numbers that overwhelm the response capabilities of healthcare systems. Proper response planning for such events requires community-based surge solutions such as the location of alternative care facilities and ways to improve coordination by considering triage and the movement of self-evacuees. In this paper, we construct a three-stage stochastic programming model to locate alternative care facilities and allocate casualties in response to catastrophic health events. Our model integrates casualty triage and the movement of self-evacuees in a systemic response framework that treats uncertainties involved in such large-scale events as probabilistically distributed scenarios. Solution times being instrumental to the practicality of the model, we propose an algorithm, based on Benders decomposition, to generate good solutions fast. We derive new valid inequalities, which we add to the Benders decomposition master problem to reduce the number of weak feasibility cuts generated. Because our algorithm can also be ineffective if the number of scenarios is large, we propose a two-stage approximation model that attempts to guess good third-stage solutions without third-stage decision variables and constraints. Our model, algorithm, and two-stage approximation are implemented in the case study of an earthquake situation in California based on the realistic ShakeOut Scenario data.

Suggested Citation

  • Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:2:p:437-453
    DOI: 10.1287/trsc.2017.0777
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0777
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Asli Kilic & M Cemali Dincer & Mahmut Ali Gokce, 2014. "Determining optimal treatment rate after a disaster," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(7), pages 1053-1067, July.
    3. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    4. Yi, Wei & Ozdamar, Linet, 2007. "A dynamic logistics coordination model for evacuation and support in disaster response activities," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1177-1193, June.
    5. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    6. T Drezner & Z Drezner & S Salhi, 2006. "A multi-objective heuristic approach for the casualty collection points location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 727-734, June.
    7. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    8. Hanif Sherali & Brian Lunday, 2013. "On generating maximal nondominated Benders cuts," Annals of Operations Research, Springer, vol. 210(1), pages 57-72, November.
    9. Gregory S. Zaric & Dena M. Bravata & Jon-Erik Cleophas Holty & Kathryn M. McDonald & Douglas K. Owens & Margaret L. Brandeau, 2008. "Modeling the Logistics of Response to Anthrax Bioterrorism," Medical Decision Making, , vol. 28(3), pages 332-350, May.
    10. Gregory S. Parnell & Christopher M. Smith & Frederick I. Moxley, 2010. "Intelligent Adversary Risk Analysis: A Bioterrorism Risk Management Model," Risk Analysis, John Wiley & Sons, vol. 30(1), pages 32-48, January.
    11. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    12. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    13. Willem Klein Haneveld & Maarten van der Vlerk, 1999. "Stochastic integer programming:General models and algorithms," Annals of Operations Research, Springer, vol. 85(0), pages 39-57, January.
    14. Rachaniotis, Nikolaos P. & Dasaklis, Tom K. & Pappis, Costas P., 2012. "A deterministic resource scheduling model in epidemic control: A case study," European Journal of Operational Research, Elsevier, vol. 216(1), pages 225-231.
    15. Peng Sun & Liu Yang & Francis de Véricourt, 2009. "Selfish Drug Allocation for Containing an International Influenza Pandemic at the Onset," Operations Research, INFORMS, vol. 57(6), pages 1320-1332, December.
    16. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    17. Richard C. Larson & Michael D. Metzger & Michael F. Cahn, 2006. "Responding to Emergencies: Lessons Learned and the Need for Analysis," Interfaces, INFORMS, vol. 36(6), pages 486-501, December.
    18. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    19. Rongbing Huang & Seokjin Kim & Mozart Menezes, 2010. "Facility location for large-scale emergencies," Annals of Operations Research, Springer, vol. 181(1), pages 271-286, December.
    20. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
    2. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    3. Sun, Huiping & Li, Yuchen & Zhang, Jianghua, 2022. "Collaboration-based reliable optimal casualty evacuation network design for large-scale emergency preparedness," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    4. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    5. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    6. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    7. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    8. Wang, Jing & Cai, Jianping & Yue, Xiaohang & Suresh, Nallan C., 2021. "Pre-positioning and real-time disaster response operations: Optimization with mobile phone location data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).
    13. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caunhye, Aakil M. & Li, Mingzhe & Nie, Xiaofeng, 2015. "A location-allocation model for casualty response planning during catastrophic radiological incidents," Socio-Economic Planning Sciences, Elsevier, vol. 50(C), pages 32-44.
    2. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    3. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    4. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    5. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    6. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    7. Repoussis, Panagiotis P. & Paraskevopoulos, Dimitris C. & Vazacopoulos, Alkiviadis & Hupert, Nathaniel, 2016. "Optimizing emergency preparedness and resource utilization in mass-casualty incidents," European Journal of Operational Research, Elsevier, vol. 255(2), pages 531-544.
    8. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    9. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    10. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    11. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2016. "Online optimization of casualty processing in major incident response: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 252(1), pages 334-348.
    12. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    13. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    14. Vahdani, Behnam & Veysmoradi, D. & Mousavi, S.M. & Amiri, M., 2022. "Planning for relief distribution, victim evacuation, redistricting and service sharing under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    15. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    16. Changshi Liu & Gang Kou & Yi Peng & Fawaz E. Alsaadi, 2019. "Location-Routing Problem for Relief Distribution in the Early Post-Earthquake Stage from the Perspective of Fairness," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    17. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    18. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    19. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    20. Placido dos Santos, Felipe Silva & Oliveira, Fabricio, 2019. "An enhanced L-Shaped method for optimizing periodic-review inventory control problems modeled via two-stage stochastic programming," European Journal of Operational Research, Elsevier, vol. 275(2), pages 677-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:2:p:437-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.