IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v194y2025ics1366554524005222.html
   My bibliography  Save this article

A data-driven hybrid scenario-based robust optimization method for relief logistics network design

Author

Listed:
  • Amin Amani, Mohammad
  • Asumadu Sarkodie, Samuel
  • Sheu, Jiuh-Biing
  • Mahdi Nasiri, Mohammad
  • Tavakkoli-Moghaddam, Reza

Abstract

The incorporation of artificial intelligence (AI) and robust optimization methods for the planning and design of relief logistics networks under relief demand–supply uncertainty appears promising for intelligent disaster management (IDM). This research proposes a data-driven hybrid scenario-based robust (SBR) method for a mixed integer second-order cone programming (MISOCP) model that integrates machine learning with a hybrid robust optimization approach to address the above issue. A machine learning technique is utilized to cluster the casualties based on location coordinates and injury severity score. Moreover, the hybrid SBR optimization method and robust optimization based on the uncertainty sets technique are utilized to cope with uncertain parameters such as the probability of facility disruption, the number of wounded individuals, transportation time, and relief demand. Additionally, the epsilon-constraint technique is applied to seek the solution for the bi-objective model. Focusing on a real case (the Kermanshah disaster), our analytical results have demonstrated not only the validity but also the relative merits of the proposed methodology against typical stochastic and robust optimization approaches. Besides, the proposed method shows all casualties can be efficiently transported to receive medical services at a fair cost, which is crucial for disaster management.

Suggested Citation

  • Amin Amani, Mohammad & Asumadu Sarkodie, Samuel & Sheu, Jiuh-Biing & Mahdi Nasiri, Mohammad & Tavakkoli-Moghaddam, Reza, 2025. "A data-driven hybrid scenario-based robust optimization method for relief logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005222
    DOI: 10.1016/j.tre.2024.103931
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524005222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Chao & Zhang, Cheng & Yahja, Alex & Mostafavi, Ali, 2021. "Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management," International Journal of Information Management, Elsevier, vol. 56(C).
    2. Wang, Xin & Kuo, Yong-Hong & Shen, Houcai & Zhang, Lianmin, 2021. "Target-oriented robust location–transportation problem with service-level measure," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 1-20.
    3. Leyla Fazli, 2024. "A novel two-stage stochastic programming model to design an integrated disaster relief supply chain network-a case study," Operations Management Research, Springer, vol. 17(4), pages 1295-1327, December.
    4. Jyotirmoy Dalal & Halit Üster, 2021. "Robust Emergency Relief Supply Planning for Foreseen Disasters Under Evacuation-Side Uncertainty," Transportation Science, INFORMS, vol. 55(3), pages 791-813, May.
    5. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    6. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    7. Xiaobing Gan & Yan Wang & Junbiao Kuang & Ye Yu & Ben Niu, 2015. "Emergency Vehicle Scheduling Problem with Time Utility in Disasters," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-7, April.
    8. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Homa Amirian & Rashed Sahraeian, 2015. "Augmented ε-constraint method in multi-objective flowshop problem with past sequence set-up times and a modified learning effect," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5962-5976, October.
    10. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    11. Amir Jamali & Amirhossein Ranjbar & Jafar Heydari & Sina Nayeri, 2022. "A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity," Annals of Operations Research, Springer, vol. 319(1), pages 1265-1300, December.
    12. Yidi Liu & Xin Li & Zhiqiang (Eric) Zheng, 2024. "Smart Natural Disaster Relief: Assisting Victims with Artificial Intelligence in Lending," Information Systems Research, INFORMS, vol. 35(2), pages 489-504, June.
    13. Sheikh Kamran Abid & Noralfishah Sulaiman & Shiau Wei Chan & Umber Nazir & Muhammad Abid & Heesup Han & Antonio Ariza-Montes & Alejandro Vega-Muñoz, 2021. "Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    14. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    15. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    16. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    17. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    18. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2020. "Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake)," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    19. Hongming Li & Erick Delage & Ning Zhu & Michael Pinedo & Shoufeng Ma, 2024. "Distributional Robustness and Inequity Mitigation in Disaster Preparedness of Humanitarian Operations," Manufacturing & Service Operations Management, INFORMS, vol. 26(1), pages 197-214, January.
    20. Peng, Peng & Snyder, Lawrence V. & Lim, Andrew & Liu, Zuli, 2011. "Reliable logistics networks design with facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1190-1211, September.
    21. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    22. repec:inm:orijoo:v:6:y:2024:i:2:p:84-117 is not listed on IDEAS
    23. Soheyl Khalilpourazari & Alireza Arshadi Khamseh, 2019. "Bi-objective emergency blood supply chain network design in earthquake considering earthquake magnitude: a comprehensive study with real world application," Annals of Operations Research, Springer, vol. 283(1), pages 355-393, December.
    24. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    25. Mohsen Yahyaei & Ali Bozorgi-Amiri, 2019. "Robust reliable humanitarian relief network design: an integration of shelter and supply facility location," Annals of Operations Research, Springer, vol. 283(1), pages 897-916, December.
    26. Bayraktar, O. Baturhan & Günneç, Dilek & Salman, F. Sibel & Yücel, Eda, 2022. "Relief Aid Provision to En Route Refugees: Multi-Period Mobile Facility Location with Mobile Demand," European Journal of Operational Research, Elsevier, vol. 301(2), pages 708-725.
    27. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    28. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    29. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    30. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    31. Erbeyoğlu, Gökalp & Bilge, Ümit, 2020. "A robust disaster preparedness model for effective and fair disaster response," European Journal of Operational Research, Elsevier, vol. 280(2), pages 479-494.
    32. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    33. Qing-Mi Hu & Laijun Zhao & Huiyong Li & Rongbing Huang, 2019. "Integrated design of emergency shelter and medical networks considering diurnal population shifts in urban areas," IISE Transactions, Taylor & Francis Journals, vol. 51(6), pages 614-637, June.
    34. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    35. Lina Yu & Huasheng Yang & Lixin Miao & Canrong Zhang, 2019. "Rollout algorithms for resource allocation in humanitarian logistics," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 887-909, August.
    36. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    37. Soheyl Khalilpourazari & Shima Soltanzadeh & Gerhard-Wilhelm Weber & Sankar Kumar Roy, 2020. "Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study," Annals of Operations Research, Springer, vol. 289(1), pages 123-152, June.
    38. Adnan ul Haque & Riffat Faizan & Fred A. Yamoah, 2023. "Turkey’s Ecotourism: Pre- and Post-pandemic Challenges," Springer Books, in: Fred A. Yamoah & Adnan ul Haque (ed.), Corporate Management Ecosystem in Emerging Economies, pages 301-313, Springer.
    39. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    40. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin de Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-building artificial intelligence and machine learning to empower big data analytics in smart cities," Post-Print hal-03613397, HAL.
    41. Ming Liu & Lijie An & Jiantong Zhang & Feng Chu & Chengbin Chu, 2019. "Energy-oriented bi-objective optimisation for a multi-module reconfigurable manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(19), pages 5974-5995, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    3. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    4. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    5. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    6. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    7. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    9. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    10. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Sun, Peng & Zhao, Dongpan & Chen, Qingxin & Yu, Xinyao & Zhu, Ning, 2025. "Distributionally robust optimization for pre-disaster facility location problem with 3D printing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    13. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    14. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    16. Jafarzadeh-Ghoushchi, Saeid & Asghari, Mohammad & Mardani, Abbas & Simic, Vladimir & Tirkolaee, Erfan Babaee, 2023. "Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    17. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    18. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    19. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    20. Leyla Fazli, 2024. "A novel two-stage stochastic programming model to design an integrated disaster relief supply chain network-a case study," Operations Management Research, Springer, vol. 17(4), pages 1295-1327, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.