IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v193y2025ics1366554524004356.html
   My bibliography  Save this article

Distributionally robust optimization for pre-disaster facility location problem with 3D printing

Author

Listed:
  • Sun, Peng
  • Zhao, Dongpan
  • Chen, Qingxin
  • Yu, Xinyao
  • Zhu, Ning

Abstract

The ongoing advancement of 3D printing technology provides an innovative approach to addressing challenges in disaster relief operations. By utilizing a variety of printing materials, 3D printers can produce essential disaster relief resources needed for disaster relief, effectively satisfying the varied demands that arise after disasters. This paper examines the joint optimization of pre-disaster and post-disaster humanitarian operations. Given the significant unpredictability of natural disasters, we introduce a two-stage distributionally robust optimization model to tackle the uncertainty in the demand for various relief resources. The first stage of the model involves decisions related to pre-disaster facility location, 3D printer deployment, and resource allocation. The second stage model addresses the post-disaster rescue activities, including decisions on the production and transportation decisions of relief resources. To address demand uncertainty, we propose an ambiguity set using the Wasserstein metric and reformulate the two-stage distributionally robust optimization model into a tractable formulation. To solve this problem, we employ a Benders decomposition algorithm with an acceleration strategy. The performance of our proposed model and algorithm is evaluated via a real-world case. Numerical experiments reveal that our distributionally robust optimization model outperforms the benchmark model across various metrics. Additionally, we conduct a series of effect analyses and provide managerial insights for decision-makers involved in disaster relief operations.

Suggested Citation

  • Sun, Peng & Zhao, Dongpan & Chen, Qingxin & Yu, Xinyao & Zhu, Ning, 2025. "Distributionally robust optimization for pre-disaster facility location problem with 3D printing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004356
    DOI: 10.1016/j.tre.2024.103844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524004356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:193:y:2025:i:c:s1366554524004356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.