IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i1p150-168.html
   My bibliography  Save this article

Testing facility location and dynamic capacity planning for pandemics with demand uncertainty

Author

Listed:
  • Liu, Kanglin
  • Liu, Changchun
  • Xiang, Xi
  • Tian, Zhili

Abstract

The outbreak of coronavirus disease 2019 (COVID-19) has seriously affected the whole world, and epidemic research has attracted increasing amounts of scholarly attention. Critical facilities such as warehouses to store emergency supplies and testing or vaccination sites could help to control the spread of COVID-19. This paper focuses on how to locate the testing facilities to satisfy the varying demand, i.e., test kits, caused by pandemics. We propose a two-phase optimization framework to locate facilities and adjust capacity during large-scale emergencies. During the first phase, the initial prepositioning strategies are determined to meet predetermined fill-rate requirements using the sample average approximation formulation. We develop an online convex optimization-based Lagrangian relaxation approach to solve the problem. Specifically, to overcome the difficulty that all scenarios should be addressed simultaneously in each iteration, we adopt an online gradient descent algorithm, in which a near-optimal approximation for a given Lagrangian dual multiplier is constructed. During the second phase, the capacity to deal with varying demand is adjusted dynamically. To overcome the inaccuracy of long-term prediction, we design a dynamic allocation policy and adaptive dynamic allocation policy to adjust the policy to meet the varying demand with only one day’s prediction. A comprehensive case study with the threat of COVID-19 is conducted. Numerical results have verified that the proposed two-phase framework is effective in meeting the varying demand caused by pandemics. Specifically, our adaptive policy can achieve a solution with only a 3.3% gap from the optimal solution with perfect information.

Suggested Citation

  • Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:150-168
    DOI: 10.1016/j.ejor.2021.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahdi Mostajabdaveh & Walter J. Gutjahr & F. Sibel Salman, 2019. "Inequity-averse shelter location for disaster preparedness," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 809-829, August.
    2. Alem, Douglas & Bonilla-Londono, Hector F. & Barbosa-Povoa, Ana Paula & Relvas, Susana & Ferreira, Deisemara & Moreno, Alfredo, 2021. "Building disaster preparedness and response capacity in humanitarian supply chains using the Social Vulnerability Index," European Journal of Operational Research, Elsevier, vol. 292(1), pages 250-275.
    3. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    4. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    5. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    6. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
    7. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    8. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    9. Meissner, Joern & Senicheva, Olga V., 2018. "Approximate dynamic programming for lateral transshipment problems in multi-location inventory systems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 49-64.
    10. German A. Velasquez & Maria E. Mayorga & Osman Y. Özaltın, 2020. "Prepositioning disaster relief supplies using robust optimization," IISE Transactions, Taylor & Francis Journals, vol. 52(10), pages 1122-1140, October.
    11. Aurelie Charles & Matthieu Lauras & Luk N. van Wassenhove & Lionel Dupont, 2016. "Designing an efficient humanitarian supply network," Post-Print hal-01532132, HAL.
    12. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    13. Wenjun Ni & Jia Shu & Miao Song, 2018. "Location and Emergency Inventory Pre†Positioning for Disaster Response Operations: Min†Max Robust Model and a Case Study of Yushu Earthquake," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 160-183, January.
    14. Beraldi, P. & Bruni, M.E., 2009. "A probabilistic model applied to emergency service vehicle location," European Journal of Operational Research, Elsevier, vol. 196(1), pages 323-331, July.
    15. Eva Regnier, 2008. "Public Evacuation Decisions and Hurricane Track Uncertainty," Management Science, INFORMS, vol. 54(1), pages 16-28, January.
    16. Edilson F Arruda & Shyam S Das & Claudia M Dias & Dayse H Pastore, 2021. "Modelling and optimal control of multi strain epidemics, with application to COVID-19," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    17. Lin, James T. & Chen, Tzu-Li & Chu, Hsiao-Ching, 2014. "A stochastic dynamic programming approach for multi-site capacity planning in TFT-LCD manufacturing under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 148(C), pages 21-36.
    18. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    19. Marín, Alfredo & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M. & Saldanha-da-Gama, Francisco, 2018. "Multi-period stochastic covering location problems: Modeling framework and solution approach," European Journal of Operational Research, Elsevier, vol. 268(2), pages 432-449.
    20. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    21. Lina Yu & Huasheng Yang & Lixin Miao & Canrong Zhang, 2019. "Rollout algorithms for resource allocation in humanitarian logistics," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 887-909, August.
    22. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    23. Xing Hong & Miguel A. Lejeune & Nilay Noyan, 2015. "Stochastic network design for disaster preparedness," IISE Transactions, Taylor & Francis Journals, vol. 47(4), pages 329-357, April.
    24. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    25. Guodong Lyu & Wang-Chi Cheung & Mabel C. Chou & Chung-Piaw Teo & Zhichao Zheng & Yuanguang Zhong, 2019. "Capacity Allocation in Flexible Production Networks: Theory and Applications," Management Science, INFORMS, vol. 65(11), pages 5091-5109, November.
    26. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    27. Alexander Shulman, 1991. "An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes," Operations Research, INFORMS, vol. 39(3), pages 423-436, June.
    28. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    29. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    30. Wang, Kung-Jeng & Nguyen, Phuc Hong, 2017. "Capacity planning with technology replacement by stochastic dynamic programming," European Journal of Operational Research, Elsevier, vol. 260(2), pages 739-750.
    31. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    32. Chen, Albert Y. & Yu, Ting-Yi, 2016. "Network based temporary facility location for the Emergency Medical Services considering the disaster induced demand and the transportation infrastructure in disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 408-423.
    33. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    34. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
    35. Vatsa, Amit Kumar & Jayaswal, Sachin, 2021. "Capacitated multi-period maximal covering location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1107-1126.
    36. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    37. Parajuli, Anubhuti & Kuzgunkaya, Onur & Vidyarthi, Navneet, 2021. "The impact of congestion on protection decisions in supply networks under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    38. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    39. Warren B. Powell, 2019. "The Next Generation of Optimization: A Unified Framework for Dynamic Resource Allocation Problems," Springer Optimization and Its Applications, in: Mahdi Fathi & Marzieh Khakifirooz & Panos M. Pardalos (ed.), Optimization in Large Scale Problems, pages 47-52, Springer.
    40. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyyed-Mahdi Hosseini-Motlagh & Mohammad Reza Ghatreh Samani & Behnam Karimi, 2023. "Resilient and social health service network design to reduce the effect of COVID-19 outbreak," Annals of Operations Research, Springer, vol. 328(1), pages 903-975, September.
    2. Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    3. Esma Akgun & Sibel A. Alumur & F. Safa Erenay, 2023. "Determining optimal COVID-19 testing center locations and capacities," Health Care Management Science, Springer, vol. 26(4), pages 748-769, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    5. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.
    6. Bian Liang & Dapeng Yang & Xinghong Qin & Teresa Tinta, 2019. "A Risk-Averse Shelter Location and Evacuation Routing Assignment Problem in an Uncertain Environment," IJERPH, MDPI, vol. 16(20), pages 1-28, October.
    7. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    9. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    10. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    11. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    12. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    13. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    14. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    15. Balcik, Burcu & Yanıkoğlu, İhsan, 2020. "A robust optimization approach for humanitarian needs assessment planning under travel time uncertainty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 40-57.
    16. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    17. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    18. Akbarpour, Mina & Ali Torabi, S. & Ghavamifar, Ali, 2020. "Designing an integrated pharmaceutical relief chain network under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    19. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    20. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:150-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.