IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i3p1107-1126.html
   My bibliography  Save this article

Capacitated multi-period maximal covering location problem with server uncertainty

Author

Listed:
  • Vatsa, Amit Kumar
  • Jayaswal, Sachin

Abstract

We study the problem of assigning doctors to existing, non-operational Primary Health Centers (PHCs). We do this in the presence of clear guidelines on the maximum population that can be served by any PHC, and uncertainties in the availability of the doctors over the planning horizon. We model the problem as a robust capacitated multi-period maximal covering location problem with server uncertainty. Such supply-side uncertainties have not been accounted for in the context of multi-period facility location in the extant literature. We present an MIP formulation of this problem, which turns out to be too difficult for an off-the-shelf solver like CPLEX. We, therefore, present several dominance rules to reduce the size of the model. We further propose a Benders decomposition based solution method with several refinements that exploit the underlying structure of the problem to solve it extremely efficiently. Our computational experiments show one of the variants of our Benders decomposition based method to be on average almost 1000 times faster, compared to the CPLEX MIP solver, for problem instances containing 300 demand nodes and 10 facilities. Further, while the CPLEX MIP solver could not solve most of the instances beyond 300 demand nodes and 10 facilities even after 20 hours, two of our variants of Benders decomposition could solve instances upto the size of 500 demand nodes and 15 facilities in less than 0.5 hour, on average.

Suggested Citation

  • Vatsa, Amit Kumar & Jayaswal, Sachin, 2021. "Capacitated multi-period maximal covering location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1107-1126.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:3:p:1107-1126
    DOI: 10.1016/j.ejor.2020.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Killmer, K. A. & Anandalingam, G. & Malcolm, S. A., 2001. "Siting noxious facilities under uncertainty," European Journal of Operational Research, Elsevier, vol. 133(3), pages 596-607, September.
    2. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    3. Marilène Cherkesly & Marie‐Ève Rancourt & Karen R. Smilowitz, 2019. "Community Healthcare Network in Underserved Areas: Design, Mathematical Models, and Analysis," Production and Operations Management, Production and Operations Management Society, vol. 28(7), pages 1716-1734, July.
    4. Tony J. Van Roy, 1986. "A Cross Decomposition Algorithm for Capacitated Facility Location," Operations Research, INFORMS, vol. 34(1), pages 145-163, February.
    5. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    6. Harwin de Vries & Joris van de Klundert & Albert P.M. Wagelmans, 2020. "The Roadside Healthcare Facility Location Problem A Managerial Network Design Challenge," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1165-1187, May.
    7. Vatsa, Amit Kumar & Ghosh, Diptesh, 2014. "Tabu Search for Multi-Period Facility Location: Uncapacitated Problem with an Uncertain Number of Servers," IIMA Working Papers WP2014-11-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Current, John & Ratick, Samuel & ReVelle, Charles, 1998. "Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach," European Journal of Operational Research, Elsevier, vol. 110(3), pages 597-609, November.
    9. Marín, Alfredo & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M. & Saldanha-da-Gama, Francisco, 2018. "Multi-period stochastic covering location problems: Modeling framework and solution approach," European Journal of Operational Research, Elsevier, vol. 268(2), pages 432-449.
    10. Ramamoorthy, Prasanna & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2018. "Multiple allocation hub interdiction and protection problems: Model formulations and solution approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 230-245.
    11. Berman, Oded & Wang, Jiamin, 2011. "The minmax regret gradual covering location problem on a network with incomplete information of demand weights," European Journal of Operational Research, Elsevier, vol. 208(3), pages 233-238, February.
    12. Igor Averbakh & Oded Berman, 2000. "Minmax Regret Median Location on a Network Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 104-110, May.
    13. George L. Vairaktarakis & Panagiotis Kouvelis, 1999. "Incorporation dynamic aspects and uncertainty in 1‐median location problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(2), pages 147-168, March.
    14. Cordeau, Jean-François & Furini, Fabio & Ljubić, Ivana, 2019. "Benders decomposition for very large scale partial set covering and maximal covering location problems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 882-896.
    15. Albareda-Sambola, Maria & Fernández, Elena & Saldanha-da-Gama, Francisco, 2011. "The facility location problem with Bernoulli demands," Omega, Elsevier, vol. 39(3), pages 335-345, June.
    16. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    17. Lihui Bai & Paul A. Rubin, 2009. "Combinatorial Benders Cuts for the Minimum Tollbooth Problem," Operations Research, INFORMS, vol. 57(6), pages 1510-1522, December.
    18. Rainer Burkard & Helidon Dollani, 2002. "A Note on the Robust 1-Center Problem on Trees," Annals of Operations Research, Springer, vol. 110(1), pages 69-82, February.
    19. Stefan Nickel & Francisco Saldanha Gama, 2015. "Multi-Period Facility Location," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 289-310, Springer.
    20. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    21. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baldomero-Naranjo, Marta & Kalcsics, Jörg & Marín, Alfredo & Rodríguez-Chía, Antonio M., 2022. "Upgrading edges in the maximal covering location problem," European Journal of Operational Research, Elsevier, vol. 303(1), pages 14-36.
    2. Liu, Kanglin & Liu, Changchun & Xiang, Xi & Tian, Zhili, 2023. "Testing facility location and dynamic capacity planning for pandemics with demand uncertainty," European Journal of Operational Research, Elsevier, vol. 304(1), pages 150-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    3. Vatsa, Amit Kumar & Ghosh, Diptesh, 2014. "Tabu Search for Multi-Period Facility Location: Uncapacitated Problem with an Uncertain Number of Servers," IIMA Working Papers WP2014-11-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Vatsa, Amit Kumar, 2014. "Multi-Period Facility Location Problem with an Uncertain Number of Servers," IIMA Working Papers WP2014-02-06, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Han, Jialin & Zhang, Jiaxiang & Zeng, Bing & Mao, Mingsong, 2021. "Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition," Omega, Elsevier, vol. 105(C).
    6. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    7. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    8. Wei Ding & Ke Qiu, 2018. "A quadratic time exact algorithm for continuous connected 2-facility location problem in trees," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1262-1298, November.
    9. Duran-Mateluna, Cristian & Ales, Zacharie & Elloumi, Sourour, 2023. "An efficient benders decomposition for the p-median problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 84-96.
    10. Güney, Evren & Leitner, Markus & Ruthmair, Mario & Sinnl, Markus, 2021. "Large-scale influence maximization via maximal covering location," European Journal of Operational Research, Elsevier, vol. 289(1), pages 144-164.
    11. Jyotirmoy Dalal & Halit Üster, 2018. "Combining Worst Case and Average Case Considerations in an Integrated Emergency Response Network Design Problem," Transportation Science, INFORMS, vol. 52(1), pages 171-188, January.
    12. Laureano F. Escudero & María Araceli Garín & Celeste Pizarro & Aitziber Unzueta, 2018. "On efficient matheuristic algorithms for multi-period stochastic facility location-assignment problems," Computational Optimization and Applications, Springer, vol. 70(3), pages 865-888, July.
    13. Attari, Mahdi Yousefi Nejad & Torkayesh, Ali Ebadi, 2018. "Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of Iranian mine industry," Operations Research Perspectives, Elsevier, vol. 5(C), pages 371-382.
    14. Lin, Yun Hui & Tian, Qingyun, 2021. "Branch-and-cut approach based on generalized benders decomposition for facility location with limited choice rule," European Journal of Operational Research, Elsevier, vol. 293(1), pages 109-119.
    15. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    16. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    17. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    18. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    19. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    20. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:3:p:1107-1126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.