IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v57y2009i6p1510-1522.html
   My bibliography  Save this article

Combinatorial Benders Cuts for the Minimum Tollbooth Problem

Author

Listed:
  • Lihui Bai

    (College of Business Administration, Valparaiso University, Valparaiso, Indiana 46383)

  • Paul A. Rubin

    (The Eli Broad Graduate School of Management, Michigan State University, East Lansing, Michigan 48824)

Abstract

We address a toll pricing problem in which the objective is to minimize the number of required toll facilities in a transportation network while inducing drivers to make the most efficient collective use of the network. We formulate the problem as a mixed-integer programming model and propose a solution method using combinatorial Benders cuts. Computational study of real networks as well as randomly generated networks indicates that our proposed method is efficient in obtaining provably optimal solutions for networks with small to medium sizes.

Suggested Citation

  • Lihui Bai & Paul A. Rubin, 2009. "Combinatorial Benders Cuts for the Minimum Tollbooth Problem," Operations Research, INFORMS, vol. 57(6), pages 1510-1522, December.
  • Handle: RePEc:inm:oropre:v:57:y:2009:i:6:p:1510-1522
    DOI: 10.1287/opre.1090.0694
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1090.0694
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1090.0694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Gleeson & Jennifer Ryan, 1990. "Identifying Minimally Infeasible Subsystems of Inequalities," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 61-63, February.
    2. Verhoef, Erik T., 2002. "Second-best congestion pricing in general networks. Heuristic algorithms for finding second-best optimal toll levels and toll points," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 707-729, September.
    3. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    2. Jyotirmoy Dalal & Halit Üster, 2021. "Robust Emergency Relief Supply Planning for Foreseen Disasters Under Evacuation-Side Uncertainty," Transportation Science, INFORMS, vol. 55(3), pages 791-813, May.
    3. Mancini, Simona & Gansterer, Margaretha, 2021. "Vehicle scheduling for rental-with-driver services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    4. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    5. Zhang, Qihuan & Wang, Ziteng & Huang, Min & Yu, Yang & Fang, Shu-Cherng, 2022. "Heterogeneous multi-depot collaborative vehicle routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 1-20.
    6. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    7. Lihui Bai & Donald Hearn & Siriphong Lawphongpanich, 2010. "A heuristic method for the minimum toll booth problem," Journal of Global Optimization, Springer, vol. 48(4), pages 533-548, December.
    8. Chinmay Maheshwari & Kshitij Kulkarni & Druv Pai & Jiarui Yang & Manxi Wu & Shankar Sastry, 2024. "Congestion Pricing for Efficiency and Equity: Theory and Applications to the San Francisco Bay Area," Papers 2401.16844, arXiv.org.
    9. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    10. Christian Va Karsten & Stefan Ropke & David Pisinger, 2018. "Simultaneous Optimization of Container Ship Sailing Speed and Container Routing with Transit Time Restrictions," Transportation Science, INFORMS, vol. 52(4), pages 769-787, August.
    11. Gelareh, Shahin & Nickel, Stefan, 2011. "Hub location problems in transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1092-1111.
    12. Vatsa, Amit Kumar & Jayaswal, Sachin, 2021. "Capacitated multi-period maximal covering location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1107-1126.
    13. Jyotirmoy Dalal & Halit Üster, 2018. "Combining Worst Case and Average Case Considerations in an Integrated Emergency Response Network Design Problem," Transportation Science, INFORMS, vol. 52(1), pages 171-188, January.
    14. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    15. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.
    16. Gelareh, Shahin & Pisinger, David, 2011. "Fleet deployment, network design and hub location of liner shipping companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 947-964.
    17. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérémy Omer & Michael Poss, 2021. "Identifying relatively irreducible infeasible subsystems of linear inequalities," Annals of Operations Research, Springer, vol. 304(1), pages 361-379, September.
    2. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    3. Axel von Kamp & Steffen Klamt, 2014. "Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    4. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    5. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.
    6. René Brandenberg & Paul Stursberg, 2021. "Refined cut selection for benders decomposition: applied to network capacity expansion problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 383-412, December.
    7. Junhong Guo & William Pozehl & Amy Cohn, 2023. "A two-stage partial fixing approach for solving the residency block scheduling problem," Health Care Management Science, Springer, vol. 26(2), pages 363-393, June.
    8. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    9. Christian Desrosiers & Philippe Galinier & Alain Hertz & Sandrine Paroz, 2009. "Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 124-150, August.
    10. Kai Kellner & Marc E. Pfetsch & Thorsten Theobald, 2019. "Irreducible Infeasible Subsystems of Semidefinite Systems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 727-742, June.
    11. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    12. Tanner, Matthew W. & Ntaimo, Lewis, 2010. "IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 290-296, November.
    13. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    14. Arnott, Richard, 2007. "Congestion tolling with agglomeration externalities," Journal of Urban Economics, Elsevier, vol. 62(2), pages 187-203, September.
    15. Mun, Se-il & Konishi, Ko-ji & Yoshikawa, Kazuhiro, 2005. "Optimal cordon pricing in a non-monocentric city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 723-736.
    16. Ian W.H. Parry, 2009. "Pricing Urban Congestion," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 461-484, September.
    17. Arnott, Richard & Shevyakhova, Elizaveta, 2014. "Tenancy rent control and credible commitment in maintenance," Regional Science and Urban Economics, Elsevier, vol. 47(C), pages 72-85.
    18. Soto, Jose J. & Macea, Luis F. & Cantillo, Victor, 2023. "Analysing a license plate-based vehicle restriction policy with optional exemption charge: The case in Cali, Colombia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    19. Tikoudis, Ioannis, 2023. "Revisiting the Pigouvian tax in urban roads: Housing supply restrictions, leaking profits and spatial inequality," Economics of Transportation, Elsevier, vol. 35(C).
    20. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:57:y:2009:i:6:p:1510-1522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.