IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v304y2021i1d10.1007_s10479-021-04126-9.html
   My bibliography  Save this article

Identifying relatively irreducible infeasible subsystems of linear inequalities

Author

Listed:
  • Jérémy Omer

    (Univ Rennes)

  • Michael Poss

    (University of Montpellier)

Abstract

A classical problem in the study of an infeasible system of linear inequalities is to determine irreducible infeasible subsystems of inequalities (IISs), i.e., infeasible subsets of inequalities whose proper subsets are feasible. In this article, we examine a particular situation where only a given subsystem is of interest for the analysis of infeasibility. For this, we define relatively irreducible infeasible subsystems (RIISs) as infeasible subsystems of inequalities that are irreducible with respect to a given subsystem. It is a generalization of the definition of an IIS, since an IIS is irreducible with respect to the full system. We provide a practical characterization of RIISs, making the link with the alternative polyhedron commonly used in the detection of IISs. We then turn to the study of the RIISs that can be obtained from the Phase I of the simplex algorithm. We answer an open question regarding the covering of the clusters of IISs and show that this result cannot be generalized to RIISs. We thus develop a practical algorithm to find a covering of the clusters of RIISs. Our findings are numerically illustrated on the Netlib infeasible linear programs.

Suggested Citation

  • Jérémy Omer & Michael Poss, 2021. "Identifying relatively irreducible infeasible subsystems of linear inequalities," Annals of Operations Research, Springer, vol. 304(1), pages 361-379, September.
  • Handle: RePEc:spr:annopr:v:304:y:2021:i:1:d:10.1007_s10479-021-04126-9
    DOI: 10.1007/s10479-021-04126-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04126-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04126-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Loon, J. N. M., 1981. "Irreducibly inconsistent systems of linear inequalities," European Journal of Operational Research, Elsevier, vol. 8(3), pages 283-288, November.
    2. John Gleeson & Jennifer Ryan, 1990. "Identifying Minimally Infeasible Subsystems of Inequalities," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 61-63, February.
    3. John W. Chinneck, 2008. "Feasibility and Infeasibility in Optimization," International Series in Operations Research and Management Science, Springer, number 978-0-387-74932-7, September.
    4. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    5. John W. Chinneck & Erik W. Dravnieks, 1991. "Locating Minimal Infeasible Constraint Sets in Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 157-168, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Kellner & Marc E. Pfetsch & Thorsten Theobald, 2019. "Irreducible Infeasible Subsystems of Semidefinite Systems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 727-742, June.
    2. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.
    3. Junhong Guo & William Pozehl & Amy Cohn, 2023. "A two-stage partial fixing approach for solving the residency block scheduling problem," Health Care Management Science, Springer, vol. 26(2), pages 363-393, June.
    4. Yash Puranik & Nikolaos V. Sahinidis, 2017. "Deletion Presolve for Accelerating Infeasibility Diagnosis in Optimization Models," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 754-766, November.
    5. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    6. Lihui Bai & Paul A. Rubin, 2009. "Combinatorial Benders Cuts for the Minimum Tollbooth Problem," Operations Research, INFORMS, vol. 57(6), pages 1510-1522, December.
    7. Tanner, Matthew W. & Ntaimo, Lewis, 2010. "IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 290-296, November.
    8. Erick Moreno-Centeno & Richard M. Karp, 2013. "The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an Application to Multigenome Alignment," Operations Research, INFORMS, vol. 61(2), pages 453-468, April.
    9. Axel von Kamp & Steffen Klamt, 2014. "Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-13, January.
    10. Daniel Baena & Jordi Castro & Antonio Frangioni, 2020. "Stabilized Benders Methods for Large-Scale Combinatorial Optimization, with Application to Data Privacy," Management Science, INFORMS, vol. 66(7), pages 3051-3068, July.
    11. John W. Chinneck, 2001. "Fast Heuristics for the Maximum Feasible Subsystem Problem," INFORMS Journal on Computing, INFORMS, vol. 13(3), pages 210-223, August.
    12. René Brandenberg & Paul Stursberg, 2021. "Refined cut selection for benders decomposition: applied to network capacity expansion problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 383-412, December.
    13. Gianpiero Canessa & Julian A. Gallego & Lewis Ntaimo & Bernardo K. Pagnoncelli, 2019. "An algorithm for binary linear chance-constrained problems using IIS," Computational Optimization and Applications, Springer, vol. 72(3), pages 589-608, April.
    14. Aggarwal, Charu C. (Charu Chandra) & Hao, Jianxiu. & Orlin, James B., 1953-, 1994. "Diagnosing infeasibilities in network flow problems," Working papers 3696-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    15. Wen Sun & Jin-Kao Hao & Alexandre Caminada, 2019. "Iterated backtrack removal search for finding k-vertex-critical subgraphs," Journal of Heuristics, Springer, vol. 25(4), pages 565-590, October.
    16. Aigerim Saken & Emil Karlsson & Stephen J. Maher & Elina Rönnberg, 2023. "Computational Evaluation of Cut-Strengthening Techniques in Logic-Based Benders’ Decomposition," SN Operations Research Forum, Springer, vol. 4(3), pages 1-53, September.
    17. Olivier Guieu & John W. Chinneck, 1999. "Analyzing Infeasible Mixed-Integer and Integer Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 63-77, February.
    18. Christian Desrosiers & Philippe Galinier & Alain Hertz & Sandrine Paroz, 2009. "Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems," Journal of Combinatorial Optimization, Springer, vol. 18(2), pages 124-150, August.
    19. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    20. Obuchowska, Wiesława T., 2012. "Feasibility in reverse convex mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 218(1), pages 58-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:304:y:2021:i:1:d:10.1007_s10479-021-04126-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.