IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v46y2010i1p1-17.html
   My bibliography  Save this article

Dynamic relief-demand management for emergency logistics operations under large-scale disasters

Author

Listed:
  • Sheu, Jiuh-Biing

Abstract

This paper presents a dynamic relief-demand management model for emergency logistics operations under imperfect information conditions in large-scale natural disasters. The proposed methodology consists of three steps: (1) data fusion to forecast relief demand in multiple areas, (2) fuzzy clustering to classify affected area into groups, and (3) multi-criteria decision making to rank the order of priority of groups. The results of tests accounting for different experimental scenarios indicate that the overall forecast errors are lower than 10% inferring the proposed method's capability of dynamic relief-demand forecasting and allocation with imperfect information to facilitate emergency logistics operations.

Suggested Citation

  • Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
  • Handle: RePEc:eee:transe:v:46:y:2010:i:1:p:1-17
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554509001161
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:46:y:2010:i:1:p:1-17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.