IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v22y2020i2p241-256.html
   My bibliography  Save this article

Robust Repositioning for Vehicle Sharing

Author

Listed:
  • Long He

    (NUS Business School, National University of Singapore, Singapore 119245)

  • Zhenyu Hu

    (NUS Business School, National University of Singapore, Singapore 119245)

  • Meilin Zhang

    (Business School, Singapore University of Social Sciences, Singapore 599494)

Abstract

Problem definition: In this paper, we study the fleet repositioning problem for a free-float vehicle sharing system, aiming to dynamically match the vehicle supply and travel demand at the lowest total cost of repositioning and lost sales. Academic/practical relevance : Besides the analytical results on the optimal repositioning policy, the proposed optimization framework is applicable to practical problems by its computational efficiency as well as the capability to handle temporally dependent demands. Methodology : We first formulate the problem as a stochastic dynamic program. To solve for a multiregion system, we deploy the distributionally robust optimization (DRO) approach that can incorporate demand temporal dependence, motivated by real data. We first propose a “myopic” two-stage DRO model that serves as both an illustration of the DRO framework and a benchmark for the later multistage model. We then develop a computationally efficient multistage DRO model with an enhanced linear decision rule (ELDR). Results : Under a two-region system, we find a simple reposition up-to and down-to policy to be optimal, when the demands are temporally independent. Such a structure is also preserved by our ELDR solution. We also provide new analytical insights by proving the optimality of ELDR in solving the single-period DRO problem. We then show that the numerical performance of the ELDR solution is close to the exact optimal solution from the dynamic program. Managerial implications : In a real-world case study of car2go, we quantify the “value of repositioning” and compare with several benchmarks to demonstrate that the ELDR solutions are computationally scalable and in general result in lower cost with less frequent repositioning. We also explore several managerial implications and extensions from the experiments.

Suggested Citation

  • Long He & Zhenyu Hu & Meilin Zhang, 2020. "Robust Repositioning for Vehicle Sharing," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 241-256, March.
  • Handle: RePEc:inm:ormsom:v:22:y:2020:i:2:p:241-256
    DOI: 10.1287/msom.2018.0734
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/msom.2018.0734
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2018.0734?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gérard P. Cachon & Kaitlin M. Daniels & Ruben Lobel, 2017. "The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 368-384, July.
    2. Hossein Abouee-Mehrizi & Oded Berman & Shrutivandana Sharma, 2015. "Optimal Joint Replenishment and Transshipment Policies in a Multi-Period Inventory System with Lost Sales," Operations Research, INFORMS, vol. 63(2), pages 342-350, April.
    3. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    4. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    5. Terry A. Taylor, 2018. "On-Demand Service Platforms," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 704-720, October.
    6. Bimpikis, Kostas & Candogan, Ozan & Saban, Daniela, 2016. "Spatial Pricing in Ride-Sharing Networks," Research Papers 3482, Stanford University, Graduate School of Business.
    7. Jia Shu & Mabel C. Chou & Qizhang Liu & Chung-Piaw Teo & I-Lin Wang, 2013. "Models for Effective Deployment and Redistribution of Bicycles Within Public Bicycle-Sharing Systems," Operations Research, INFORMS, vol. 61(6), pages 1346-1359, December.
    8. Samuel P. Fraiberger & Arun Sundararajan, 2015. "Peer-to-Peer Rental Markets in the Sharing Economy," Working Papers 15-19, NET Institute.
    9. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    10. Rahul Nair & Elise Miller-Hooks, 2011. "Fleet Management for Vehicle Sharing Operations," Transportation Science, INFORMS, vol. 45(4), pages 524-540, November.
    11. Ioannis Bellos & Mark Ferguson & L. Beril Toktay, 2017. "The Car Sharing Economy: Interaction of Business Model Choice and Product Line Design," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 185-201, May.
    12. Amir Ardestani-Jaafari & Erick Delage, 2016. "Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems," Operations Research, INFORMS, vol. 64(2), pages 474-494, April.
    13. Paterson, Colin & Kiesmüller, Gudrun & Teunter, Ruud & Glazebrook, Kevin, 2011. "Inventory models with lateral transshipments: A review," European Journal of Operational Research, Elsevier, vol. 210(2), pages 125-136, April.
    14. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    15. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    16. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    17. Eppen, Gary D & Fama, Eugene F, 1969. "Cash Balance and Simple Dynamic Portfolio Problems with Proportional Costs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(2), pages 119-133, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    2. Zhong, Yuanguang & Zillmann, Stefan & Zhang, Ruijie & Zhou, Yong-Wu & Xie, Wei, 2023. "Vehicle repositioning for a ride-sourcing network system providing differentiated services," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 221-243.
    3. Neda Mirzaeian & Soo-Haeng Cho & Alan Scheller-Wolf, 2021. "A Queueing Model and Analysis for Autonomous Vehicles on Highways," Management Science, INFORMS, vol. 67(5), pages 2904-2923, May.
    4. Yong Liang & Mengshi Lu & Zuo‐Jun Max Shen & Runyu Tang, 2021. "Data Center Network Design for Internet‐Related Services and Cloud Computing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2077-2101, July.
    5. Yang, Yu & Ridouane, Yassine & Boland, Natashia & Erera, Alan & Savelsbergh, Martin, 2022. "Substitution-based equipment balancing in service networks with multiple equipment types," European Journal of Operational Research, Elsevier, vol. 300(3), pages 966-978.
    6. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    7. Huang, Wei & Huang, Wentao & Jian, Sisi, 2022. "One-way carsharing service design under demand uncertainty: A service reliability-based two-stage stochastic program approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    8. Martin, Layla & Minner, Stefan, 2021. "Feature-based selection of carsharing relocation modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    10. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    11. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    12. Fu, Chenyi & Ma, Shoufeng & Zhu, Ning & He, Qiao-Chu & Yang, Hai, 2022. "Bike-sharing inventory management for market expansion," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 28-54.
    13. Ming Zhao & Nickolas Freeman & Kai Pan, 2023. "Robust Sourcing Under Multilevel Supply Risks: Analysis of Random Yield and Capacity," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 178-195, January.
    14. Zhaowei Hao & Long He & Zhenyu Hu & Jun Jiang, 2020. "Robust Vehicle Pre‐Allocation with Uncertain Covariates," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 955-972, April.
    15. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    16. Dai Yao & Chuang Tang & Junhong Chu, 2023. "A Dynamic Model of Owner Acceptance in Peer-to-Peer Sharing Markets," Marketing Science, INFORMS, vol. 42(1), pages 166-188, January.
    17. Quan-Lin Li & Rui-Na Fan, 2022. "A mean-field matrix-analytic method for bike sharing systems under Markovian environment," Annals of Operations Research, Springer, vol. 309(2), pages 517-551, February.
    18. Yiling Zhang & Mengshi Lu & Siqian Shen, 2021. "On the Values of Vehicle-to-Grid Electricity Selling in Electric Vehicle Sharing," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 488-507, March.
    19. Chen, Qingxin & Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & He, Qiao-Chu, 2023. "A target-based optimization model for bike-sharing systems: From the perspective of service efficiency and equity," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 235-260.
    20. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).
    21. Long He & Guangrui Ma & Wei Qi & Xin Wang, 2021. "Charging an Electric Vehicle-Sharing Fleet," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 471-487, March.
    22. Liu, Yang & Wu, Fanyou & Lyu, Cheng & Li, Shen & Ye, Jieping & Qu, Xiaobo, 2022. "Deep dispatching: A deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    2. Mengshi Lu & Zhihao Chen & Siqian Shen, 2018. "Optimizing the Profitability and Quality of Service in Carshare Systems Under Demand Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 162-180, May.
    3. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    4. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    5. Saif Benjaafar & Harald Bernhard & Costas Courcoubetis & Michail Kanakakis & Spyridon Papafragkos, 2022. "Drivers, Riders, and Service Providers: The Impact of the Sharing Economy on Mobility," Management Science, INFORMS, vol. 68(1), pages 123-142, January.
    6. Hu, Lu & Liu, Yang, 2016. "Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 268-299.
    7. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    9. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.
    10. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    11. Saif Benjaafar & Ming Hu, 2020. "Operations Management in the Age of the Sharing Economy: What Is Old and What Is New?," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 93-101, January.
    12. Kaspi, Mor & Raviv, Tal & Tzur, Michal & Galili, Hila, 2016. "Regulating vehicle sharing systems through parking reservation policies: Analysis and performance bounds," European Journal of Operational Research, Elsevier, vol. 251(3), pages 969-987.
    13. Saif Benjaafar & Shining Wu & Hanlin Liu & Einar Bjarki Gunnarsson, 2022. "Dimensioning On-Demand Vehicle Sharing Systems," Management Science, INFORMS, vol. 68(2), pages 1218-1232, February.
    14. Long He & Guangrui Ma & Wei Qi & Xin Wang, 2021. "Charging an Electric Vehicle-Sharing Fleet," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 471-487, March.
    15. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    16. Yiling Zhang & Mengshi Lu & Siqian Shen, 2021. "On the Values of Vehicle-to-Grid Electricity Selling in Electric Vehicle Sharing," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 488-507, March.
    17. Long Gao & Jim (Junmin) Shi & Michael F. Gorman & Ting Luo, 2020. "Business Analytics for Intermodal Capacity Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 310-329, March.
    18. Martin, Layla & Minner, Stefan, 2021. "Feature-based selection of carsharing relocation modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    19. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    20. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:22:y:2020:i:2:p:241-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.