IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v186y2024ics1366554524001297.html
   My bibliography  Save this article

A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem

Author

Listed:
  • Jin, Zhongyi
  • Ng, Kam K.H.
  • Zhang, Chenliang
  • Liu, Wei
  • Zhang, Fangni
  • Xu, Gangyan

Abstract

Drone-supported last-mile humanitarian logistics applications play a crucial role in the rapid and efficient delivery of essential relief items, such as medicine, blood, and vaccines, during disaster and emergency situations. This paper explores a novel drone-supported relief facility location problem (DSRFLP) aimed at establishing an effective drone-supported last-mile humanitarian logistics system. The problem involves making joint decisions for both pre-disaster and post-disaster phases while considering the characteristics of drone-based delivery operations and uncertain demands. In the pre-disaster phase, we make the decisions regarding the locations of drone-supported relief facilities, inventory prepositioning of relief items, assignment of drones to the opened facilities, and allocation of drones to disaster demand sites. In the post-disaster phase, we make decisions related to delivery quantities. To tackle the challenge of incomplete demand distribution information in chaotic disaster environments, we establish a distributionally robust optimisation (DRO) model to handle the uncertainty of demands. This model adopts worst-case mean Conditional Value-at-Risk as the risk measurement, reflecting the risk-averse attitude of humanitarian organisers. In this paper, three ambiguity sets (box, ellipsoidal, and polyhedral) are considered to describe the ambiguity distributions of demands. To overcome the computational challenge, we reformulate the DRO model under three ambiguity sets into two mixed-integer linear programming models and one second-order cone programming model, which can be efficiently solved by off-the-shelf solvers. Furthermore, we validate our proposed DRO model through a small-scale example and a large-scale case study based on the Lushan earthquake in China. The computational outcomes underscore the superior performance of the proposed DRO model to mitigate the impact arising from incomplete probability distributions. We propose managerial implications and insights to support the decision-making of humanitarian organisations based on the experimental results. Finally, we propose two extended models to incorporate multiple relief items and equity constraints in priority settings and conduct numerical experiments to adapt to various real-world disaster scenarios.

Suggested Citation

  • Jin, Zhongyi & Ng, Kam K.H. & Zhang, Chenliang & Liu, Wei & Zhang, Fangni & Xu, Gangyan, 2024. "A risk-averse distributionally robust optimisation approach for drone-supported relief facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001297
    DOI: 10.1016/j.tre.2024.103538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.