IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v101y2025ics0038012125001090.html

A scenario robust Bi-objective model for integrating disaster mitigation and preparedness

Author

Listed:
  • Paul, Jomon A.
  • Wang, Xinfang

Abstract

Policymakers often overlook the synergies between disaster management's mitigation and preparedness policies. We tap into this potential aided by a scenario robust bi-objective model we develop in this study. These competing objectives include mitigation costs associated with the readiness of a disaster-prone region and preparedness social costs consisting of logistics, deprivation, and fatality costs. We devote our attention to analyzing the tradeoffs with the minimization of these differing costs. Noting that disaster management settings typically present data accuracy challenges, we model uncertain parameters within each scenario using easily estimable deterministic uncertainty sets. We propose a novel framework that utilizes secondary data to estimate willingness to pay for essential goods such as food and water. Using this framework, we develop deprivation functions to account for human suffering due to shortages and delayed arrival of food and water supplies. Policymakers can gain valuable guidance regarding inter-system benefits using our models and insights from their practical deployment. Specifically, benefits accrued from a vertical collaboration between agencies handling mitigation and preparedness policymaking currently operating in silos, engaging in suboptimal policies. We illustrate our model application using an extensive case study featuring a hurricane-prone region. As an integral component of our analytical models, we deploy empirical models to estimate key parameters such as the readiness of the region. Our results provide fresh policy insights into collaborative strategies policymakers can adopt for effective disaster management through a cost-benefit analysis. Particularly, it can aid ethics boards of disaster agencies that provide guidance and oversight on ethical issues related to disaster response and recovery efforts with objective evidence.

Suggested Citation

  • Paul, Jomon A. & Wang, Xinfang, 2025. "A scenario robust Bi-objective model for integrating disaster mitigation and preparedness," Socio-Economic Planning Sciences, Elsevier, vol. 101(C).
  • Handle: RePEc:eee:soceps:v:101:y:2025:i:c:s0038012125001090
    DOI: 10.1016/j.seps.2025.102260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012125001090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2025.102260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Farzaneh, Mohammad Amin & Rezapour, Shabnam & Baghaian, Atefe & Amini, M. Hadi, 2023. "An integrative framework for coordination of damage assessment, road restoration, and relief distribution in disasters," Omega, Elsevier, vol. 115(C).
    2. Holguín-Veras, José & Jaller, Miguel & Wachtendorf, Tricia, 2012. "Comparative performance of alternative humanitarian logistic structures after the Port-au-Prince earthquake: ACEs, PIEs, and CANs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1623-1640.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Delgado-Lindeman, Maira & Arellana, Julián & Cantillo, Víctor, 2019. "Willingness to pay functions for emergency ambulance services," Journal of choice modelling, Elsevier, vol. 30(C), pages 28-37.
    6. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    7. Wilfredo Yushimito & Miguel Jaller & Satish Ukkusuri, 2012. "A Voronoi-Based Heuristic Algorithm for Locating Distribution Centers in Disasters," Networks and Spatial Economics, Springer, vol. 12(1), pages 21-39, March.
    8. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    9. Schmidt, M. & Schöbel, Anita & Thom, Lisa, 2019. "Min-ordering and max-ordering scalarization methods for multi-objective robust optimization," European Journal of Operational Research, Elsevier, vol. 275(2), pages 446-459.
    10. Manoj Vanajakumari & Subodha Kumar & Sushil Gupta, 2016. "An Integrated Logistic Model for Predictable Disasters," Production and Operations Management, Production and Operations Management Society, vol. 25(5), pages 791-811, May.
    11. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    12. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    13. Burcu Balcik & Selene Silvestri & Marie‐Ève Rancourt & Gilbert Laporte, 2019. "Collaborative Prepositioning Network Design for Regional Disaster Response," Production and Operations Management, Production and Operations Management Society, vol. 28(10), pages 2431-2455, October.
    14. Sushil Gupta & Martin K. Starr & Reza Zanjirani Farahani & Niki Matinrad, 2016. "Disaster Management from a POM Perspective: Mapping a New Domain," Production and Operations Management, Production and Operations Management Society, vol. 25(10), pages 1611-1637, October.
    15. Li, Yuchen & Liu, Yang, 2023. "Distributionally robust optimization for collaborative emergency response network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    16. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    18. Jomon Paul & Govind Hariharan, 2012. "Location-allocation planning of stockpiles for effective disaster mitigation," Annals of Operations Research, Springer, vol. 196(1), pages 469-490, July.
    19. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    20. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    21. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    22. Martin K. Starr & Luk N. Van Wassenhove, 2014. "Introduction to the Special Issue on Humanitarian Operations and Crisis Management," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 925-937, June.
    23. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    24. Cotes, Nathalie & Cantillo, Victor, 2019. "Including deprivation costs in facility location models for humanitarian relief logistics," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 89-100.
    25. Raith, Andrea & Schmidt, Marie & Schöbel, Anita & Thom, Lisa, 2018. "Multi-objective minmax robust combinatorial optimization with cardinality-constrained uncertainty," European Journal of Operational Research, Elsevier, vol. 267(2), pages 628-642.
    26. Baharmand, Hossein & Comes, Tina & Lauras, Matthieu, 2019. "Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 86-110.
    27. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    28. Macea, Luis F. & Cantillo, Victor & Arellana, Julian, 2018. "Influence of attitudes and perceptions on deprivation cost functions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 125-141.
    29. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    30. Gemma Berenguer & Pinar Keskinocak & J. George Shanthikumar & Jayashankar M. Swaminathan & Luk Van Wassenhove & Fuminori Toyasaki & Emel Arikan & Lena Silbermayr & Ioanna Falagara Sigala, 2017. "Disaster Relief Inventory Management: Horizontal Cooperation between Humanitarian Organizations," Production and Operations Management, Production and Operations Management Society, vol. 26(6), pages 1221-1237, June.
    31. Cantillo, Victor & Serrano, Iván & Macea, Luis F. & Holguín-Veras, José, 2018. "Discrete choice approach for assessing deprivation cost in humanitarian relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 63(C), pages 33-46.
    32. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    33. Holguín-Veras, José & Taniguchi, Eiichi & Jaller, Miguel & Aros-Vera, Felipe & Ferreira, Frederico & Thompson, Russell G., 2014. "The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 86-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    2. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    3. Amir Jamali & Amirhossein Ranjbar & Jafar Heydari & Sina Nayeri, 2022. "A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity," Annals of Operations Research, Springer, vol. 319(1), pages 1265-1300, December.
    4. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Liu, Kanglin & Zhang, Hengliang & Zhang, Zhi-Hai, 2021. "The efficiency, equity and effectiveness of location strategies in humanitarian logistics: A robust chance-constrained approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    6. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Yu, Xinyao & Chen, Jie & Zhu, Ning & Ma, Shoufeng & Peng, Binbin, 2025. "A robust stochastic approach to relief pre-positioning for earthquake response under event-wise uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 198(C).
    8. Paul, Jomon A. & Zhang, Minjiao, 2019. "Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework," European Journal of Operational Research, Elsevier, vol. 274(1), pages 108-125.
    9. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    10. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    11. Zhong, Sheng & Wang, Longsheng, 2025. "Deprivation cost theory in humanitarian relief: A literature review and prospects," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    12. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    13. Wang, Xinfang (Jocelyn) & Paul, Jomon A., 2020. "Robust optimization for hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 221(C).
    14. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    15. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    16. Jónas Oddur Jónasson & Kamalini Ramdas & Alp Sungu, 2022. "Social impact operations at the global base of the pyramid," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4364-4378, December.
    17. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    18. Yuli Zhang & Amber R. Richter & Jeyaveerasingam George Shanthikumar & Zuo‐Jun Max Shen, 2022. "Dynamic Inventory Relocation in Disaster Relief," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1052-1070, March.
    19. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    20. Liu, Yang & Tian, Jun & Yu, Ning, 2025. "Prepositioning of emergency supplies and channel coordination: Considering a loss-averse supplier and government penalty," International Journal of Production Economics, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:101:y:2025:i:c:s0038012125001090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.