IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4419-1665-5_10.html
   My bibliography  Save this book chapter

Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications

In: Handbook of Metaheuristics

Author

Listed:
  • Mauricio G.C. Resende

    (AT&T Labs Research)

  • Celso C. Ribeiro

    (Universidade Federal Fluminense)

Abstract

GRASP is a multi-start metaheuristic for combinatorial optimization problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative solution construction mechanisms and techniques to speed up the search are also described: alternative randomized greedy construction schemes, Reactive GRASP, cost perturbations, bias functions, memory and learning, local search on partially constructed solutions, hashing, and filtering. We also discuss implementation strategies of memory-based intensification and post-optimization techniques using path-relinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.

Suggested Citation

  • Mauricio G.C. Resende & Celso C. Ribeiro, 2010. "Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 283-319, Springer.
  • Handle: RePEc:spr:isochp:978-1-4419-1665-5_10
    DOI: 10.1007/978-1-4419-1665-5_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Stefanello & Vaneet Aggarwal & Luciana S. Buriol & Mauricio G. C. Resende, 2019. "Hybrid algorithms for placement of virtual machines across geo-separated data centers," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 748-793, October.
    2. Musmanno, Leonardo M. & Ribeiro, Celso C., 2016. "Heuristics for the generalized median graph problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 371-384.
    3. Yupeng Zhou & Jinshu Li & Yang Liu & Shuai Lv & Yong Lai & Jianan Wang, 2020. "Improved Memetic Algorithm for Solving the Minimum Weight Vertex Independent Dominating Set," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    4. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    5. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    6. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
    7. Bulhões, Teobaldo & Subramanian, Anand & Erdoğan, Güneş & Laporte, Gilbert, 2018. "The static bike relocation problem with multiple vehicles and visits," European Journal of Operational Research, Elsevier, vol. 264(2), pages 508-523.
    8. Sohrabi, Somayeh & Ziarati, Koorush & Keshtkaran, Morteza, 2020. "A Greedy Randomized Adaptive Search Procedure for the Orienteering Problem with Hotel Selection," European Journal of Operational Research, Elsevier, vol. 283(2), pages 426-440.
    9. Simona Mancini, 2013. "Multi-echelon distribution systems in city logistics," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-2.
    10. Martí, Rafael & Resende, Mauricio G.C. & Ribeiro, Celso C., 2013. "Multi-start methods for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 226(1), pages 1-8.
    11. Maria Albareda-Sambola & Elena Fernández & Francisco Saldanha-da-Gama, 2017. "Heuristic Solutions to the Facility Location Problem with General Bernoulli Demands," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 737-753, November.
    12. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    13. Duarte, Abraham & Martí, Rafael & Álvarez, Ada & Ángel-Bello, Francisco, 2012. "Metaheuristics for the linear ordering problem with cumulative costs," European Journal of Operational Research, Elsevier, vol. 216(2), pages 270-277.
    14. Shuli Hu & Xiaoli Wu & Huan Liu & Yiyuan Wang & Ruizhi Li & Minghao Yin, 2019. "Multi-Objective Neighborhood Search Algorithm Based on Decomposition for Multi-Objective Minimum Weighted Vertex Cover Problem," Sustainability, MDPI, vol. 11(13), pages 1-21, July.
    15. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2020. "Cost minimization of large-scale infrastructure for electricity generation and transmission," Omega, Elsevier, vol. 96(C).
    16. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    17. Kamilla Hamre Bolstad & Manu Joshi & Lars Magnus Hvattum & Magnus Stålhane, 2022. "Composing Vessel Fleets for Maintenance at Offshore Wind Farms by Solving a Dual-Level Stochastic Programming Problem Using GRASP," Logistics, MDPI, vol. 6(1), pages 1-22, January.
    18. Skorin-Kapov, Nina & Furdek, Marija & Aparicio Pardo, Ramon & Mariño, Pablo Pavón, 2012. "Wavelength assignment for reducing in-band crosstalk attack propagation in optical networks: ILP formulations and heuristic algorithms," European Journal of Operational Research, Elsevier, vol. 222(3), pages 418-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4419-1665-5_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.