IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v216y2012i2p270-277.html
   My bibliography  Save this article

Metaheuristics for the linear ordering problem with cumulative costs

Author

Listed:
  • Duarte, Abraham
  • Martí, Rafael
  • Álvarez, Ada
  • Ángel-Bello, Francisco

Abstract

The linear ordering problem with cumulative costs (LOPCC) is a variant of the well-known linear ordering problem, in which a cumulative propagation makes the objective function highly non-linear. The LOPCC has been recently introduced in the context of mobile-phone telecommunications. In this paper we propose two metaheuristic methods for this NP-hard problem. The first one is based on the GRASP methodology, while the second one implements an Iterated Greedy-Strategic Oscillation procedure. We also propose a post-processing based on Path Relinking to obtain improved outcomes. We compare our methods with the state-of-the-art procedures on a set of 218 previously reported instances. The comparison favors the Iterated Greedy – Strategic Oscillation with the Path Relinking post-processing, which is able to identify 87 new best objective function values.

Suggested Citation

  • Duarte, Abraham & Martí, Rafael & Álvarez, Ada & Ángel-Bello, Francisco, 2012. "Metaheuristics for the linear ordering problem with cumulative costs," European Journal of Operational Research, Elsevier, vol. 216(2), pages 270-277.
  • Handle: RePEc:eee:ejores:v:216:y:2012:i:2:p:270-277
    DOI: 10.1016/j.ejor.2011.07.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711006680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.07.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Righini, Giovanni, 2008. "A branch-and-bound algorithm for the linear ordering problem with cumulative costs," European Journal of Operational Research, Elsevier, vol. 186(3), pages 965-971, May.
    2. Abraham Duarte & Manuel Laguna & Rafael Martí, 2011. "Tabu search for the linear ordering problem with cumulative costs," Computational Optimization and Applications, Springer, vol. 48(3), pages 697-715, April.
    3. Thomas A. Feo & Mauricio G. C. Resende & Stuart H. Smith, 1994. "A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set," Operations Research, INFORMS, vol. 42(5), pages 860-878, October.
    4. Mauricio G.C. Resende & Celso C. Ribeiro, 2010. "Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 283-319, Springer.
    5. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos García-Martínez & Fred Glover & Francisco Rodriguez & Manuel Lozano & Rafael Martí, 2014. "Strategic oscillation for the quadratic multiple knapsack problem," Computational Optimization and Applications, Springer, vol. 58(1), pages 161-185, May.
    2. J. Terán-Villanueva & Héctor Fraire Huacuja & Juan Carpio Valadez & Rodolfo Pazos Rangel & Héctor Puga Soberanes & José Martínez Flores, 2015. "A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems," Computational Optimization and Applications, Springer, vol. 62(3), pages 787-814, December.
    3. García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Terán-Villanueva & Héctor Fraire Huacuja & Juan Carpio Valadez & Rodolfo Pazos Rangel & Héctor Puga Soberanes & José Martínez Flores, 2015. "A heterogeneous cellular processing algorithm for minimizing the power consumption in wireless communications systems," Computational Optimization and Applications, Springer, vol. 62(3), pages 787-814, December.
    2. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    3. Fernando Stefanello & Vaneet Aggarwal & Luciana S. Buriol & Mauricio G. C. Resende, 2019. "Hybrid algorithms for placement of virtual machines across geo-separated data centers," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 748-793, October.
    4. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    5. Musmanno, Leonardo M. & Ribeiro, Celso C., 2016. "Heuristics for the generalized median graph problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 371-384.
    6. Kuo-Ching Ying & Yi-Ju Tsai, 2017. "Minimising total cost for training and assigning multiskilled workers in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2978-2989, May.
    7. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    8. Herrán, Alberto & Manuel Colmenar, J. & Duarte, Abraham, 2021. "An efficient variable neighborhood search for the Space-Free Multi-Row Facility Layout problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 893-907.
    9. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    10. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    11. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    12. Mario Pavone & Giuseppe Narzisi & Giuseppe Nicosia, 2012. "Clonal selection: an immunological algorithm for global optimization over continuous spaces," Journal of Global Optimization, Springer, vol. 53(4), pages 769-808, August.
    13. Parreño, Francisco & Pacino, Dario & Alvarez-Valdes, Ramon, 2016. "A GRASP algorithm for the container stowage slot planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 141-157.
    14. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    15. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    16. Alejandra Casado & Sergio Pérez-Peló & Jesús Sánchez-Oro & Abraham Duarte, 2022. "A GRASP algorithm with Tabu Search improvement for solving the maximum intersection of k-subsets problem," Journal of Heuristics, Springer, vol. 28(1), pages 121-146, February.
    17. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    18. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    19. Gang Xuan & Win-Chin Lin & Shuenn-Ren Cheng & Wei-Lun Shen & Po-An Pan & Chih-Ling Kuo & Chin-Chia Wu, 2022. "A Robust Single-Machine Scheduling Problem with Two Job Parameter Scenarios," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    20. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:216:y:2012:i:2:p:270-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.