IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i10p2978-2989.html
   My bibliography  Save this article

Minimising total cost for training and assigning multiskilled workers in production systems

Author

Listed:
  • Kuo-Ching Ying
  • Yi-Ju Tsai

Abstract

This paper investigates the multiskilled worker training and assignment (MWT&A) problem of the seru production system (SPS), which is a new type of assembly line configured as multiple assembly cells, or so-called serus. The configuration of the SPS emphasises production efficiency and flexibility, achieved by multiskilled workers (MWs) able to cope with the demand of high-variety and low-volume manufacturing. Well-arranged and trained MWs are viewed as a critical factor when it comes to enhancing the performance of SPSs. This paper studies the MWT&A problem in the SPS with the aim of minimising the total cost, specifically, the workers’ training cost and the balance cost of processing times of the MWs in serus. This study provides an applicable mathematical programming model and designs a two-phase heuristic, named the SAIG algorithm, to effectively and efficiently solve this problem. The performance of the proposed algorithm is demonstrated by a comparison with the state-of-the-art heuristic through a series of computational experiments.

Suggested Citation

  • Kuo-Ching Ying & Yi-Ju Tsai, 2017. "Minimising total cost for training and assigning multiskilled workers in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2978-2989, May.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:10:p:2978-2989
    DOI: 10.1080/00207543.2016.1277594
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1277594
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1277594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luong Thuan Thanh & Jacques A Ferland & Bouazza Elbenani & Nguyen Dinh Thuc & Van Hien Nguyen, 2016. "A computational study of hybrid approaches of metaheuristic algorithms for the cell formation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(1), pages 20-36, January.
    2. Dario Ikuo Miyake, 2006. "The shift from belt conveyor line to work-cell based assembly systems to cope with increasing demand variation in Japanese industries," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 6(4), pages 419-439.
    3. K-C Ying, 2009. "An iterated greedy heuristic for multistage hybrid flowshop scheduling problems with multiprocessor tasks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 810-817, June.
    4. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    5. Sofianopoulou, Stella, 1992. "Simulated annealing applied to the process allocation problem," European Journal of Operational Research, Elsevier, vol. 60(3), pages 327-334, August.
    6. Kuo-Ching Ying & Shih-Wei Lin & Chung-Cheng Lu, 2011. "Cell formation using a simulated annealing algorithm with variable neighbourhood," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 5(1), pages 22-42.
    7. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    8. Wallace J. Hopp & Eylem Tekin & Mark P. Van Oyen, 2004. "Benefits of Skill Chaining in Serial Production Lines with Cross-Trained Workers," Management Science, INFORMS, vol. 50(1), pages 83-98, January.
    9. Dario Ikuo Miyake, 2006. "The Shift from Belt Conveyor Line to Work-cell Based Assembly Systems to Cope with Increasing Demand Variation and Fluctuation in The Japanese Electronics Industries," CIRJE F-Series CIRJE-F-397, CIRJE, Faculty of Economics, University of Tokyo.
    10. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    11. Olivella, Jordi & Nembhard, David, 2016. "Calibrating cross-training to meet demand mix variation and employee absence," European Journal of Operational Research, Elsevier, vol. 248(2), pages 462-472.
    12. Yu, Yang & Tang, Jiafu & Sun, Wei & Yin, Yong & Kaku, Ikou, 2013. "Reducing worker(s) by converting assembly line into a pure cell system," International Journal of Production Economics, Elsevier, vol. 145(2), pages 799-806.
    13. Ertay, Tijen & Ruan, Da, 2005. "Data envelopment analysis based decision model for optimal operator allocation in CMS," European Journal of Operational Research, Elsevier, vol. 164(3), pages 800-810, August.
    14. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye Wang & Jiafu Tang, 2022. "Optimized skill configuration for the seru production system under an uncertain demand," Annals of Operations Research, Springer, vol. 316(1), pages 445-465, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Wang & Jiafu Tang, 2022. "Optimized skill configuration for the seru production system under an uncertain demand," Annals of Operations Research, Springer, vol. 316(1), pages 445-465, September.
    2. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.
    3. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    4. Chang Liu & Zhen Li & Jiafu Tang & Xuequn Wang & Ming-Jong Yao, 2022. "How SERU production system improves manufacturing flexibility and firm performance: an empirical study in China," Annals of Operations Research, Springer, vol. 316(1), pages 529-554, September.
    5. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    6. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
    7. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    8. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    9. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    10. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    11. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    12. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    13. Said Aqil & Karam Allali, 2021. "On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time," Annals of Operations Research, Springer, vol. 296(1), pages 615-637, January.
    14. Pagnozzi, Federico & Stützle, Thomas, 2021. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints," Operations Research Perspectives, Elsevier, vol. 8(C).
    15. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    16. Wang, Yuhang & Han, Yuyan & Wang, Yuting & Tasgetiren, M. Fatih & Li, Junqing & Gao, Kaizhou, 2023. "Intelligent optimization under the makespan constraint: Rapid evaluation mechanisms based on the critical machine for the distributed flowshop group scheduling problem," European Journal of Operational Research, Elsevier, vol. 311(3), pages 816-832.
    17. Victor Fernandez-Viagas & Luis Sanchez-Mediano & Alvaro Angulo-Cortes & David Gomez-Medina & Jose Manuel Molina-Pariente, 2022. "The Permutation Flow Shop Scheduling Problem with Human Resources: MILP Models, Decoding Procedures, NEH-Based Heuristics, and an Iterated Greedy Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-32, September.
    18. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    19. Chenyao Zhang & Yuyan Han & Yuting Wang & Junqing Li & Kaizhou Gao, 2023. "A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    20. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:10:p:2978-2989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.