IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v324y2025i3p839-854.html
   My bibliography  Save this article

Multi-objective cooperative co-evolution algorithm with hypervolume-based Q-learning for hybrid seru system

Author

Listed:
  • Zhang, Zhecong
  • Yu, Yang
  • Qi, Xuqiang
  • Lu, Yangguang
  • Li, Xiaolong
  • Kaku, Ikou

Abstract

The hybrid seru system (HSS), which is an innovative production pattern that emerges from real-world production situations, is practical because it includes both serus and a flow line, allowing temporary workers who are unable to complete all tasks to be assigned to the flow line. We focus on the HSS by minimising both makespan and total labour time. The HSS includes two complicated coupled NP-hard subproblems: hybrid seru formation and hybrid seru scheduling. Thus, we developed a multi-objective cooperative co-evolution algorithm with hypervolume-based Q-learning (MOCCHVQL) involving hybrid seru formation and scheduling subpopulations, evolved using a genetic algorithm. To achieve balance between exploration and exploitation, a hypervolume-based Q-learning mechanism is proposed to adaptively adjust the number of non-dominated hybrid seru formations/scheduling in co-evolution. To reduce computational time and enhance population diversity, a population partitioning mechanism is proposed. Extensive comparative results demonstrate that the MOCCHVQL outperforms state-of-the-art algorithms in terms of solution convergence and diversity, with the hypervolume metric increasing by 22 % and inverse generational distance metric decreasing by 76 %. Compared with a pure seru system (PSS), the HSS can significantly reduce training tasks, thereby conserving the training budget. In scenarios with fewer workers and more batches, a positive phenomenon, where the HSS significantly decreases the training tasks relative to PSS while only slightly increasing the makespan, was observed. In specific instances, the HSS reduced the number of training tasks by 50 %, while only increasing the makespan by 10.5 %.

Suggested Citation

  • Zhang, Zhecong & Yu, Yang & Qi, Xuqiang & Lu, Yangguang & Li, Xiaolong & Kaku, Ikou, 2025. "Multi-objective cooperative co-evolution algorithm with hypervolume-based Q-learning for hybrid seru system," European Journal of Operational Research, Elsevier, vol. 324(3), pages 839-854.
  • Handle: RePEc:eee:ejores:v:324:y:2025:i:3:p:839-854
    DOI: 10.1016/j.ejor.2025.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725001468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    2. Yong Yin & Kathryn E. Stecke & Dongni Li, 2018. "The evolution of production systems from Industry 2.0 through Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 848-861, January.
    3. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
    4. Qiqi Miao & Zhaoyang Bai & Xiaobing Liu & Muhammad Awais, 2023. "Modelling and numerical analysis for seru system balancing with lot splitting," International Journal of Production Research, Taylor & Francis Journals, vol. 61(21), pages 7410-7433, November.
    5. Yang Yu & Wei Sun & Jiafu Tang & Ikou Kaku & Junwei Wang, 2017. "Line- conversion towards reducing worker(s) without increasing makespan: models, exact and meta-heuristic solutions," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2990-3007, May.
    6. Yuhong Ren & Jiafu Tang & Yang Yu & Xiaolong Li, 2024. "A two-stage stochastic programming model and parallel Master–Slave adaptive GA for flexible Seru system formation," International Journal of Production Research, Taylor & Francis Journals, vol. 62(4), pages 1144-1161, February.
    7. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    8. Yu, Yang & Tang, Jiafu & Sun, Wei & Yin, Yong & Kaku, Ikou, 2013. "Reducing worker(s) by converting assembly line into a pure cell system," International Journal of Production Economics, Elsevier, vol. 145(2), pages 799-806.
    9. Li, Dongni & Jiang, Yuzhou & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2023. "An on-line seru scheduling algorithm with proactive waiting considering resource conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 506-515.
    10. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    11. Kathryn E. Stecke & Yong Yin & Ikou Kaku & Yasuhiko Murase, 2012. "Seru: The Organizational Extension of JIT for a Super-Talent Factory," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 3(1), pages 106-119, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Wang & Min Li & Guanbin Kong & Haiwen Xu, 2024. "Joint decision-making for divisional seru scheduling and worker assignment considering process sequence constraints," Annals of Operations Research, Springer, vol. 338(2), pages 1157-1185, July.
    2. Ye Wang & Jiafu Tang, 2022. "Optimized skill configuration for the seru production system under an uncertain demand," Annals of Operations Research, Springer, vol. 316(1), pages 445-465, September.
    3. Li, Dongni & Jiang, Yuzhou & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2023. "An on-line seru scheduling algorithm with proactive waiting considering resource conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 506-515.
    4. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.
    5. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    6. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    7. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    8. Kuo-Ching Ying & Yi-Ju Tsai, 2017. "Minimising total cost for training and assigning multiskilled workers in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2978-2989, May.
    9. Yu, Yang & Tang, Jiafu & Gong, Jun & Yin, Yong & Kaku, Ikou, 2014. "Mathematical analysis and solutions for multi-objective line-cell conversion problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 774-786.
    10. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "An effective two phase heuristic for synchronized seru production scheduling and 3PL transportation problems," International Journal of Production Economics, Elsevier, vol. 268(C).
    11. Li, Dongni & Jin, Hongbo & Zhang, Yaoxin, 2025. "Dynamic worker allocation in Seru production systems with actor–critic and pointer networks," European Journal of Operational Research, Elsevier, vol. 324(1), pages 62-74.
    12. Chang Liu & Zhen Li & Jiafu Tang & Xuequn Wang & Ming-Jong Yao, 2022. "How SERU production system improves manufacturing flexibility and firm performance: an empirical study in China," Annals of Operations Research, Springer, vol. 316(1), pages 529-554, September.
    13. Shiquan Ling & Daqiang Guo & Mingxing Li & Yiming Rong & George Q. Huang, 2024. "Heterogeneous demand–capacity synchronization for smart assembly cell line based on artificial intelligence-enabled IIoT," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 539-554, February.
    14. Li, Dongni & Lyu, Yao & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2024. "Order sequencing for a bucket brigade seru in a mass customization environment," International Journal of Production Economics, Elsevier, vol. 270(C).
    15. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    16. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    17. Maref M. F. Alokshe & Muri Wole Adedokun & Kolawole Iyiola, 2025. "Advanced manufacturing technologies, strategic agility, business network and sustained competitive performance: an empirical evidence from an emerging economy," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-16, December.
    18. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    19. Chien-Liang Chiu & I-Fan Hsiao & Lily Chang, 2023. "Overviewing Global Surface Temperature Changes Regarding CO 2 Emission, Population Density, and Energy Consumption in the Industry: Policy Suggestions," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    20. Bustinza, Oscar F. & Opazo-Basaez, Marco & Tarba, Shlomo, 2022. "Exploring the interplay between Smart Manufacturing and KIBS firms in configuring product-service innovation performance," Technovation, Elsevier, vol. 118(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:324:y:2025:i:3:p:839-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.