IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i2d10.1007_s10845-022-02050-8.html
   My bibliography  Save this article

Heterogeneous demand–capacity synchronization for smart assembly cell line based on artificial intelligence-enabled IIoT

Author

Listed:
  • Shiquan Ling

    (The University of Hong Kong
    Southern University of Science and Technology)

  • Daqiang Guo

    (The University of Hong Kong
    University of Cambridge)

  • Mingxing Li

    (Jinan University (Zhuhai Campus))

  • Yiming Rong

    (Southern University of Science and Technology)

  • George Q. Huang

    (The Hong Kong Polytechnic University)

Abstract

An assembly cell line (ACL) is one type of cell production practice, derived from the Toyota Production System in the electronics industry and rapidly spread to other fields. In this mode, the conveyor line is divided into assembly cells (ACs) where various parts and tools are placed closer to the workers, enabling them to perform multiple tasks throughout an entire product assembly from start to finish. In this way, ACL allows manufacturers to rapidly configure an appropriate heterogeneous capacity to match heterogeneous demands with diversified customer orders in the high-mix, low-volume (HMLV) environment, which is the spread of the Just-In-Time (JIT) philosophy from the material level to the organization level. However, due to the lack of real-time information sharing in the ACL workshop, especially the up-to-date individual capacity and asynchronous production processes within and between ACs, it is hard to coordinate the heterogeneous capacities of ACs to meet the HMLV demands in a complex manufacturing environment with uncertainties. In this context, this paper proposes a heterogeneous demand–capacity synchronization (HDCS) for smart ACL by using artificial intelligence-enabled IIoT (AIoT) technologies, in which computer vision (CV) is applied for up-to-date capacity analysis of ACs. Based on these, an AIoT-enabled Graduation Intelligent Manufacturing System (GiMS) with feedback loops is developed to support real-time information sharing for the synchronous coordination of the ACL operation, which also provides the basis for the implementation of the HDCS mechanism through a rolling scheduling approach. Finally, a real-life industrial case is carried out by a proof-of-concept prototype to verify the proposed approach, and the results show that the measures on shipment punctuality and production efficiency are both significantly improved.

Suggested Citation

  • Shiquan Ling & Daqiang Guo & Mingxing Li & Yiming Rong & George Q. Huang, 2024. "Heterogeneous demand–capacity synchronization for smart assembly cell line based on artificial intelligence-enabled IIoT," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 539-554, February.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02050-8
    DOI: 10.1007/s10845-022-02050-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02050-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02050-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    2. Scott M. Shafer & David A. Nembhard & Mustafa V. Uzumeri, 2001. "The Effects of Worker Learning, Forgetting, and Heterogeneity on Assembly Line Productivity," Management Science, INFORMS, vol. 47(12), pages 1639-1653, December.
    3. Glock, C. H. & Grosse, E. H. & Neumann, W. P. & Sgarbossa, F., 2017. "Editorial: Human factors in industrial and logistic system design," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 89304, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Daqiang Guo & Ray Y. Zhong & Shiquan Ling & Yiming Rong & George Q. Huang, 2020. "A roadmap for Assembly 4.0: self-configuration of fixed-position assembly islands under Graduation Intelligent Manufacturing System," International Journal of Production Research, Taylor & Francis Journals, vol. 58(15), pages 4631-4646, July.
    5. Dario Ikuo Miyake, 2006. "The shift from belt conveyor line to work-cell based assembly systems to cope with increasing demand variation in Japanese industries," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 6(4), pages 419-439.
    6. Ron Adner & Daniel Levinthal, 2001. "Demand Heterogeneity and Technology Evolution: Implications for Product and Process Innovation," Management Science, INFORMS, vol. 47(5), pages 611-628, May.
    7. Ahmad Barari & Marcos Sales Guerra Tsuzuki & Yuval Cohen & Marco Macchi, 2021. "Editorial: intelligent manufacturing systems towards industry 4.0 era," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1793-1796, October.
    8. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    9. Kathryn E. Stecke & Yong Yin & Ikou Kaku & Yasuhiko Murase, 2012. "Seru: The Organizational Extension of JIT for a Super-Talent Factory," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 3(1), pages 106-119, January.
    10. Jian Chen & Meilin Wang & Xiang T. R. Kong & George Q. Huang & Qinyun Dai & Guoqiang Shi, 2019. "Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2659-2668, October.
    11. Peng Lin & Leidi Shen & Zhiheng Zhao & George Q. Huang, 2019. "Graduation manufacturing system: synchronization with IoT-enabled smart tickets," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2885-2900, December.
    12. Cheng Qian & Yingfeng Zhang & Chen Jiang & Shenle Pan & Yiming Rong, 2020. "A real-time data-driven collaborative mechanism in fixed-position assembly systems for smart manufacturing," Post-Print hal-02190419, HAL.
    13. Yong Yin & Kathryn E. Stecke & Dongni Li, 2018. "The evolution of production systems from Industry 2.0 through Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 848-861, January.
    14. Stadtler, Hartmut, 2003. "Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20204, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Stanislav Chankov & Marc-Thorsten Hütt & Julia Bendul, 2018. "Influencing factors of synchronization in manufacturing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(14), pages 4781-4801, July.
    16. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    2. Ye Wang & Jiafu Tang, 2022. "Optimized skill configuration for the seru production system under an uncertain demand," Annals of Operations Research, Springer, vol. 316(1), pages 445-465, September.
    3. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    4. Chang Liu & Zhen Li & Jiafu Tang & Xuequn Wang & Ming-Jong Yao, 2022. "How SERU production system improves manufacturing flexibility and firm performance: an empirical study in China," Annals of Operations Research, Springer, vol. 316(1), pages 529-554, September.
    5. Lili Wang & Min Li & Guanbin Kong & Haiwen Xu, 2024. "Joint decision-making for divisional seru scheduling and worker assignment considering process sequence constraints," Annals of Operations Research, Springer, vol. 338(2), pages 1157-1185, July.
    6. Li, Dongni & Jiang, Yuzhou & Zhang, Jinhui & Cui, Zihua & Yin, Yong, 2023. "An on-line seru scheduling algorithm with proactive waiting considering resource conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 506-515.
    7. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    8. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    9. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    10. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.
    11. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Chen, Jie, 2022. "A column generation-based exact solution method for seru scheduling problems," Omega, Elsevier, vol. 108(C).
    12. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    13. Ranasinghe, Thilini & Senanayake, Chanaka D. & Grosse, Eric H., 2024. "Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system," International Journal of Production Economics, Elsevier, vol. 267(C).
    14. Liu, Yu & Zhang, Qin & Ouyang, Zhiyuan & Huang, Hong-Zhong, 2021. "Integrated production planning and preventive maintenance scheduling for synchronized parallel machines," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    16. repec:use:tkiwps:1818 is not listed on IDEAS
    17. Eelke Wiersma, 2007. "Conditions That Shape the Learning Curve: Factors That Increase the Ability and Opportunity to Learn," Management Science, INFORMS, vol. 53(12), pages 1903-1915, December.
    18. Kathy A. Paulson Gjerde & Susan A. Slotnick & Matthew J. Sobel, 2002. "New Product Innovation with Multiple Features and Technology Constraints," Management Science, INFORMS, vol. 48(10), pages 1268-1284, October.
    19. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    20. Kuo-Ching Ying & Yi-Ju Tsai, 2017. "Minimising total cost for training and assigning multiskilled workers in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2978-2989, May.
    21. Cappetta, Rossella & Cillo, Paola & Ponti, Anna, 2006. "Convergent designs in fine fashion: An evolutionary model for stylistic innovation," Research Policy, Elsevier, vol. 35(9), pages 1273-1290, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:2:d:10.1007_s10845-022-02050-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.