IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v303y2017icp89-112.html
   My bibliography  Save this article

Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times

Author

Listed:
  • Pan, Quan-Ke
  • Gao, Liang
  • Li, Xin-Yu
  • Gao, Kai-Zhou

Abstract

This paper proposes a total of nine algorithms to minimize the makespan for the hybrid flowshop scheduling problem with sequence-dependent setup times. The first six algorithms are trajectory-based metaheuristics, including three variants of iterated local search and three variants of iterated greedy. The remaining three algorithms are population-based metaheuristics, namely, the improved fruit fly optimization, the improved migrating birds optimization, and the discrete artificial bee colony optimization. We present some advanced and effective technologies, including three mixed neighborhood structures, an enhanced perturbation method, and an enhanced destruction and construction procedure for the trajectory-based metaheuristics. We propose a path-relinking-based cooperative search, a diversity control scheme, and a diversified initialization approach for the improved fruit fly optimization. We calibrate the parameters and operators for the proposed algorithms by means of a design of experiments approach. To evaluate the proposed algorithms, we present several adaptations of other recent well-known meta-heuristics for the problem and conduct a comprehensive set of computational and statistical experiments to demonstrate the effectiveness of the presented algorithms. Among them, the discrete artificial bee colony optimization is the best-performing algorithm and it is able to improve 126 out of the 240 best known solutions for the benchmarks in the literature.

Suggested Citation

  • Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
  • Handle: RePEc:eee:apmaco:v:303:y:2017:i:c:p:89-112
    DOI: 10.1016/j.amc.2017.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317300127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    2. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    3. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    4. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    5. Kurz, Mary E. & Askin, Ronald G., 2003. "Comparing scheduling rules for flexible flow lines," International Journal of Production Economics, Elsevier, vol. 85(3), pages 371-388, September.
    6. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    7. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
    8. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "A modified artificial bee colony algorithm for order acceptance in two-machine flow shops," International Journal of Production Economics, Elsevier, vol. 141(1), pages 14-23.
    9. Quan-Ke Pan & Ling Wang, 2008. "A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(3), pages 279-297.
    10. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    11. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    12. Kurz, Mary E. & Askin, Ronald G., 2004. "Scheduling flexible flow lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 159(1), pages 66-82, November.
    13. Rajendran, Chandrasekharan & Chaudhuri, Dipak, 1992. "Scheduling in n-job, m-stage flowshop with parallel processors to minimize makespan," International Journal of Production Economics, Elsevier, vol. 27(2), pages 137-143, May.
    14. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    15. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    16. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    17. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Li & Ray Y. Zhong & Ali Vatankhah Barenji & J. J. Liu & C. X. Yu & George Q. Huang, 2021. "Bi-objective hybrid flow shop scheduling with common due date," Operational Research, Springer, vol. 21(2), pages 1153-1178, June.
    2. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    3. Weiwei Wang & Biao Zhang & Baoxian Jia, 2023. "A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    4. Mohamadreza Dabiri & Mehdi Yazdani & Bahman Naderi & Hassan Haleh, 2022. "Modeling and solution methods for hybrid flow shop scheduling problem with job rejection," Operational Research, Springer, vol. 22(3), pages 2721-2765, July.
    5. Missaoui, Ahmed & Ruiz, Rubén, 2022. "A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows," European Journal of Operational Research, Elsevier, vol. 303(1), pages 99-113.
    6. Chengshuai Li & Biao Zhang & Yuyan Han & Yuting Wang & Junqing Li & Kaizhou Gao, 2022. "Energy-Efficient Hybrid Flowshop Scheduling with Consistent Sublots Using an Improved Cooperative Coevolutionary Algorithm," Mathematics, MDPI, vol. 11(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    2. Pagnozzi, Federico & Stützle, Thomas, 2021. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints," Operations Research Perspectives, Elsevier, vol. 8(C).
    3. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    4. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    5. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    6. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    7. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
    8. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    9. Urlings, Thijs & Ruiz, Rubén & Stützle, Thomas, 2010. "Shifting representation search for hybrid flexible flowline problems," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1086-1095, December.
    10. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    11. Alfaro-Fernández, Pedro & Ruiz, Rubén & Pagnozzi, Federico & Stützle, Thomas, 2020. "Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 282(3), pages 835-845.
    12. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    13. Kalczynski, Pawel J. & Kamburowski, Jerzy, 2009. "An empirical analysis of the optimality rate of flow shop heuristics," European Journal of Operational Research, Elsevier, vol. 198(1), pages 93-101, October.
    14. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    15. Benavides, Alexander J. & Ritt, Marcus & Miralles, Cristóbal, 2014. "Flow shop scheduling with heterogeneous workers," European Journal of Operational Research, Elsevier, vol. 237(2), pages 713-720.
    16. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    17. Wang, Chuyang & Li, Xiaoping & Wang, Qian, 2010. "Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion," European Journal of Operational Research, Elsevier, vol. 206(1), pages 64-72, October.
    18. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    19. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    20. Chen-Yang Cheng & Shih-Wei Lin & Pourya Pourhejazy & Kuo-Ching Ying & Yu-Zhe Lin, 2021. "No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework," Mathematics, MDPI, vol. 9(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:303:y:2017:i:c:p:89-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.