IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i3p454-463.html
   My bibliography  Save this article

Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem

Author

Listed:
  • García-Martínez, C.
  • Rodriguez, F.J.
  • Lozano, M.

Abstract

Iterated greedy search is a simple and effective metaheuristic for combinatorial problems. Its flexibility enables the incorporation of components from other metaheuristics with the aim of obtaining effective and powerful hybrid approaches. We propose a tabu-enhanced destruction mechanism for iterated greedy search that records the last removed objects and avoids removing them again in subsequent iterations. The aim is to provide a more diversified and successful search process with regards to the standard destruction mechanism, which selects the solution components for removal completely at random.

Suggested Citation

  • García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:454-463
    DOI: 10.1016/j.ejor.2013.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713006164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ribas, Imma & Companys, Ramon & Tort-Martorell, Xavier, 2011. "An iterated greedy algorithm for the flowshop scheduling problem with blocking," Omega, Elsevier, vol. 39(3), pages 293-301, June.
    2. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    3. Urlings, Thijs & Ruiz, Rubén & Stützle, Thomas, 2010. "Shifting representation search for hybrid flexible flowline problems," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1086-1095, December.
    4. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    5. Fred Glover & Gary A. Kochenberger & Bahram Alidaee, 1998. "Adaptive Memory Tabu Search for Binary Quadratic Programs," Management Science, INFORMS, vol. 44(3), pages 336-345, March.
    6. Duarte, Abraham & Martí, Rafael & Álvarez, Ada & Ángel-Bello, Francisco, 2012. "Metaheuristics for the linear ordering problem with cumulative costs," European Journal of Operational Research, Elsevier, vol. 216(2), pages 270-277.
    7. F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
    8. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
    9. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    10. Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
    11. Cheang, Brenda & Gao, Xiang & Lim, Andrew & Qin, Hu & Zhu, Wenbin, 2012. "Multiple pickup and delivery traveling salesman problem with last-in-first-out loading and distance constraints," European Journal of Operational Research, Elsevier, vol. 223(1), pages 60-75.
    12. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    13. M Gallego & M Laguna & R Martí & A Duarte, 2013. "Tabu search with strategic oscillation for the maximally diverse grouping problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 724-734, May.
    14. Leão, Aline A.S. & Santos, Maristela O. & Hoto, Robinson & Arenales, Marcos N., 2011. "The constrained compartmentalized knapsack problem: mathematical models and solution methods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 455-463, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver G. Czibula & Hanyu Gu & Yakov Zinder, 2018. "Planning personnel retraining: column generation heuristics," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 896-915, October.
    2. Diaz, Juan Esteban & Handl, Julia & Xu, Dong-Ling, 2018. "Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system," European Journal of Operational Research, Elsevier, vol. 266(3), pages 976-989.
    3. Yuning Chen & Jin-Kao Hao, 2015. "Iterated responsive threshold search for the quadratic multiple knapsack problem," Annals of Operations Research, Springer, vol. 226(1), pages 101-131, March.
    4. Carlos García-Martínez & Fred Glover & Francisco Rodriguez & Manuel Lozano & Rafael Martí, 2014. "Strategic oscillation for the quadratic multiple knapsack problem," Computational Optimization and Applications, Springer, vol. 58(1), pages 161-185, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huerta-Muñoz, Diana L. & Ríos-Mercado, Roger Z. & Ruiz, Rubén, 2017. "An iterated greedy heuristic for a market segmentation problem with multiple attributes," European Journal of Operational Research, Elsevier, vol. 261(1), pages 75-87.
    2. Lozano, M. & Molina, D. & GarcI´a-MartI´nez, C., 2011. "Iterated greedy for the maximum diversity problem," European Journal of Operational Research, Elsevier, vol. 214(1), pages 31-38, October.
    3. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    4. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    5. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    6. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    7. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    8. Carlos García-Martínez & Fred Glover & Francisco Rodriguez & Manuel Lozano & Rafael Martí, 2014. "Strategic oscillation for the quadratic multiple knapsack problem," Computational Optimization and Applications, Springer, vol. 58(1), pages 161-185, May.
    9. Ángel Corberán & Juanjo Peiró & Vicente Campos & Fred Glover & Rafael Martí, 2016. "Strategic oscillation for the capacitated hub location problem with modular links," Journal of Heuristics, Springer, vol. 22(2), pages 221-244, April.
    10. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    11. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.
    12. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    13. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    14. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    15. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    16. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    17. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    18. Wang, Chuyang & Li, Xiaoping & Wang, Qian, 2010. "Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion," European Journal of Operational Research, Elsevier, vol. 206(1), pages 64-72, October.
    19. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    20. Pinacho Davidson, Pedro & Blum, Christian & Lozano, Jose A., 2018. "The weighted independent domination problem: Integer linear programming models and metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 265(3), pages 860-871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:454-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.