IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v201y2012i1p383-40110.1007-s10479-012-1164-8.html
   My bibliography  Save this article

GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times

Author

Listed:
  • F. Rodriguez
  • C. Blum
  • C. García-Martínez
  • M. Lozano

Abstract

In this work, we tackle the problem of scheduling a set of jobs on a set of non-identical parallel machines with the goal of minimising the total weighted completion times. GRASP is a multi-start method that consists of two phases: a solution construction phase, which randomly constructs a greedy solution, and an improvement phase, which uses that solution as an initial starting point. In the last few years, the GRASP methodology has arisen as a prospective metaheuristic approach to find high-quality solutions for several difficult problems in reasonable computational times. With the aim of providing additional results and insights along this line of research, this paper proposes a new GRASP model that combines the basic scheme with two significant elements that have been shown to be very successful in order to improve GRASP performance. These elements are path-relinking and evolutionary path-relinking. The benefits of our proposal in comparison to existing metaheuristics proposed in the literature are experimentally shown. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
  • Handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:383-401:10.1007/s10479-012-1164-8
    DOI: 10.1007/s10479-012-1164-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1164-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1164-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renata M. Aiex & Mauricio G. C. Resende & Panos M. Pardalos & Gerardo Toraldo, 2005. "GRASP with Path Relinking for Three-Index Assignment," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 224-247, May.
    2. Parag Pendharkar & James Rodger, 2000. "Nonlinear programming and genetic search application for production scheduling in coal mines," Annals of Operations Research, Springer, vol. 95(1), pages 251-267, January.
    3. Weng, Michael X. & Lu, John & Ren, Haiying, 2001. "Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective," International Journal of Production Economics, Elsevier, vol. 70(3), pages 215-226, April.
    4. Graham Kendall & Kay Tan & Edmund Burke & Stephen Smith, 2010. "Preface for the special volume on Computational Intelligence in Scheduling," Annals of Operations Research, Springer, vol. 180(1), pages 1-2, November.
    5. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    6. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    7. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    8. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    9. Manuel Laguna & Rafael Marti, 1999. "GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 44-52, February.
    10. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    11. Cheng, T. C. E. & Sin, C. C. S., 1990. "A state-of-the-art review of parallel-machine scheduling research," European Journal of Operational Research, Elsevier, vol. 47(3), pages 271-292, August.
    12. Azizoglu, Meral & Kirca, Omer, 1999. "On the minimization of total weighted flow time with identical and uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 113(1), pages 91-100, February.
    13. Rosenbloom, E. S. & Goertzen, N. F., 1987. "Cyclic nurse scheduling," European Journal of Operational Research, Elsevier, vol. 31(1), pages 19-23, July.
    14. Waligóra, Grzegorz, 2009. "Tabu search for discrete-continuous scheduling problems with heuristic continuous resource allocation," European Journal of Operational Research, Elsevier, vol. 193(3), pages 849-856, March.
    15. Celso C. Ribeiro & Eduardo Uchoa & Renato F. Werneck, 2002. "A Hybrid GRASP with Perturbations for the Steiner Problem in Graphs," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 228-246, August.
    16. Guang Feng & Hoong Lau, 2008. "Efficient algorithms for machine scheduling problems with earliness and tardiness penalties," Annals of Operations Research, Springer, vol. 159(1), pages 83-95, March.
    17. Jacek Błażewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Jan Węglarz, 2007. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, number 978-3-540-32220-7, November.
    18. Jarrah, Ahmad I. Z. & Bard, Jonathan F. & de Silva, Anura H., 1992. "A heuristic for machine scheduling at general mail facilities," European Journal of Operational Research, Elsevier, vol. 63(2), pages 192-206, December.
    19. Dodin, Bajis & Huang Chan, K., 1991. "Application of production scheduling methods to external and internal audit scheduling," European Journal of Operational Research, Elsevier, vol. 52(3), pages 267-279, June.
    20. Buxey, Geoff, 1989. "Production scheduling: Practice and theory," European Journal of Operational Research, Elsevier, vol. 39(1), pages 17-31, March.
    21. Tjark Vredeveld & Cor Hurkens, 2002. "Experimental Comparison of Approximation Algorithms for Scheduling Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 175-189, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.
    2. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
    3. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    4. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    5. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    2. Kerem Bülbül & Halil Şen, 2017. "An exact extended formulation for the unrelated parallel machine total weighted completion time problem," Journal of Scheduling, Springer, vol. 20(4), pages 373-389, August.
    3. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.
    4. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    5. Plateau, M.-C. & Rios-Solis, Y.A., 2010. "Optimal solutions for unrelated parallel machines scheduling problems using convex quadratic reformulations," European Journal of Operational Research, Elsevier, vol. 201(3), pages 729-736, March.
    6. Dunstall, Simon & Wirth, Andrew, 2005. "A comparison of branch-and-bound algorithms for a family scheduling problem with identical parallel machines," European Journal of Operational Research, Elsevier, vol. 167(2), pages 283-296, December.
    7. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    8. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    9. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    10. Zhi‐Long Chen & Warren B. Powell, 2003. "Exact algorithms for scheduling multiple families of jobs on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 823-840, October.
    11. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    12. Hui-Chih Hung & Bertrand M. T. Lin & Marc E. Posner & Jun-Min Wei, 2019. "Preemptive parallel-machine scheduling problem of maximizing the number of on-time jobs," Journal of Scheduling, Springer, vol. 22(4), pages 413-431, August.
    13. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    14. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    15. George L. Vairaktarakis, 2003. "The Value of Resource Flexibility in the Resource-Constrained Job Assignment Problem," Management Science, INFORMS, vol. 49(6), pages 718-732, June.
    16. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    17. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    18. Fanjul-Peyro, Luis & Perea, Federico & Ruiz, Rubén, 2017. "Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources," European Journal of Operational Research, Elsevier, vol. 260(2), pages 482-493.
    19. Yang-Kuei Lin, 2018. "Scheduling efficiency on correlated parallel machine scheduling problems," Operational Research, Springer, vol. 18(3), pages 603-624, October.
    20. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:201:y:2012:i:1:p:383-401:10.1007/s10479-012-1164-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.