IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i1p60-75.html
   My bibliography  Save this article

Multiple pickup and delivery traveling salesman problem with last-in-first-out loading and distance constraints

Author

Listed:
  • Cheang, Brenda
  • Gao, Xiang
  • Lim, Andrew
  • Qin, Hu
  • Zhu, Wenbin

Abstract

We extend the traveling salesman problem with pickup and delivery and LIFO loading (TSPPDL) by considering two additional factors, namely the use of multiple vehicles and a limitation on the total distance that a vehicle can travel; both of these factors occur commonly in practice. We call the resultant problem the multiple pickup and delivery traveling salesman problem with LIFO loading and distance constraints (MTSPPD-LD). This paper presents a thorough preliminary investigation of the MTSPPD-LD. We propose six new neighborhood operators for the problem that can be used in search heuristics or meta-heuristics. We also devise a two-stage approach for solving the problem, where the first stage focuses on minimizing the number of vehicles required and the second stage minimizes the total travel distance. We consider two possible approaches for the first stage (simulated annealing and ejection pool) and two for the second stage (variable neighborhood search and probabilistic tabu search). Our computational results serve as benchmarks for future researchers on the problem.

Suggested Citation

  • Cheang, Brenda & Gao, Xiang & Lim, Andrew & Qin, Hu & Zhu, Wenbin, 2012. "Multiple pickup and delivery traveling salesman problem with last-in-first-out loading and distance constraints," European Journal of Operational Research, Elsevier, vol. 223(1), pages 60-75.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:60-75
    DOI: 10.1016/j.ejor.2012.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalantari, Bahman & Hill, Arthur V. & Arora, Sant R., 1985. "An algorithm for the traveling salesman problem with pickup and delivery customers," European Journal of Operational Research, Elsevier, vol. 22(3), pages 377-386, December.
    2. A. Felipe & M. Ortuño & G. Tirado, 2009. "New neighborhood structures for the Double Traveling Salesman Problem with Multiple Stacks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 190-213, July.
    3. Felipe, Angel & Teresa Ortuño, M. & Tirado, Gregorio, 2011. "Using intermediate infeasible solutions to approach vehicle routing problems with precedence and loading constraints," European Journal of Operational Research, Elsevier, vol. 211(1), pages 66-75, May.
    4. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    5. Li, Yongquan & Lim, Andrew & Oon, Wee-Chong & Qin, Hu & Tu, Dejian, 2011. "The tree representation for the pickup and delivery traveling salesman problem with LIFO loading," European Journal of Operational Research, Elsevier, vol. 212(3), pages 482-496, August.
    6. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    7. Francesco Carrabs & Jean-François Cordeau & Gilbert Laporte, 2007. "Variable Neighborhood Search for the Pickup and Delivery Traveling Salesman Problem with LIFO Loading," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 618-632, November.
    8. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    9. Healy, Patrick & Moll, Robert, 1995. "A new extension of local search applied to the Dial-A-Ride Problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 83-104, May.
    10. Manuel Iori & Silvano Martello, 2010. "Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 4-27, July.
    11. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    12. Manuel Iori & Silvano Martello, 2010. "Rejoinder on: Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 41-42, July.
    13. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    14. Gilbert Laporte & Yves Nobert & Martin Desrochers, 1985. "Optimal Routing under Capacity and Distance Restrictions," Operations Research, INFORMS, vol. 33(5), pages 1050-1073, October.
    15. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    16. Petersen, Hanne L. & Madsen, Oli B.G., 2009. "The double travelling salesman problem with multiple stacks - Formulation and heuristic solution approaches," European Journal of Operational Research, Elsevier, vol. 198(1), pages 139-147, October.
    17. Antonio Frangioni & Emiliano Necciari & Maria Grazia Scutellà, 2004. "A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 8(2), pages 195-220, June.
    18. Chung-Lun Li & David Simchi-Levi & Martin Desrochers, 1992. "On the Distance Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 40(4), pages 790-799, August.
    19. Li, Haibing & Lim, Andrew, 2003. "Local search with annealing-like restarts to solve the VRPTW," European Journal of Operational Research, Elsevier, vol. 150(1), pages 115-127, October.
    20. Homberger, Jorg & Gehring, Hermann, 2005. "A two-phase hybrid metaheuristic for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 162(1), pages 220-238, April.
    21. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    22. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qingfeng & Li, Kunpeng & Liu, Zhixue, 2014. "Model and algorithm for an unpaired pickup and delivery vehicle routing problem with split loads," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 218-235.
    2. Sonela Stillo & Gentisa Furxhi, 2016. "The Retention of the Employees as Long as Possible in the Organization, Through Finding the Right Factors of Motivation. Albania as a Case of Study," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 2, May - Aug.
    3. Cui, Weiwei & Yang, Yiran & Di, Lei, 2023. "Modeling and optimization for static-dynamic routing of a vehicle with additive manufacturing equipment," International Journal of Production Economics, Elsevier, vol. 257(C).
    4. Benavent, Enrique & Landete, Mercedes & Mota, Enrique & Tirado, Gregorio, 2015. "The multiple vehicle pickup and delivery problem with LIFO constraints," European Journal of Operational Research, Elsevier, vol. 243(3), pages 752-762.
    5. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    6. Pereira, Armando Honorio & Mateus, Geraldo Robson & Urrutia, Sebastián Alberto, 2022. "Valid inequalities and branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks," European Journal of Operational Research, Elsevier, vol. 300(1), pages 207-220.
    7. García-Martínez, C. & Rodriguez, F.J. & Lozano, M., 2014. "Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 454-463.
    8. Marilène Cherkesly & Guy Desaulniers & Gilbert Laporte, 2015. "Branch-Price-and-Cut Algorithms for the Pickup and Delivery Problem with Time Windows and Last-in-First-Out Loading," Transportation Science, INFORMS, vol. 49(4), pages 752-766, November.
    9. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    10. Huang, Baobin & Tang, Lixin & Baldacci, Roberto & Wang, Gongshu & Sun, Defeng, 2023. "A metaheuristic algorithm for a locomotive routing problem arising in the steel industry," European Journal of Operational Research, Elsevier, vol. 308(1), pages 385-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongquan & Lim, Andrew & Oon, Wee-Chong & Qin, Hu & Tu, Dejian, 2011. "The tree representation for the pickup and delivery traveling salesman problem with LIFO loading," European Journal of Operational Research, Elsevier, vol. 212(3), pages 482-496, August.
    2. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    3. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    4. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    5. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    6. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    7. Schneider, Michael, 2016. "The vehicle-routing problem with time windows and driver-specific times," European Journal of Operational Research, Elsevier, vol. 250(1), pages 101-119.
    8. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    9. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    10. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    11. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    12. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    13. Selma Khebbache-Hadji & Christian Prins & Alice Yalaoui & Mohamed Reghioui, 2013. "Heuristics and memetic algorithm for the two-dimensional loading capacitated vehicle routing problem with time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 307-336, March.
    14. Hanne Pollaris & Kris Braekers & An Caris & Gerrit K. Janssens & Sabine Limbourg, 2016. "Capacitated vehicle routing problem with sequence-based pallet loading and axle weight constraints," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(2), pages 231-255, June.
    15. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    16. Hideki Hashimoto & Mutsunori Yagiura & Shinji Imahori & Toshihide Ibaraki, 2013. "Recent progress of local search in handling the time window constraints of the vehicle routing problem," Annals of Operations Research, Springer, vol. 204(1), pages 171-187, April.
    17. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    18. Ma, Hong & Cheang, Brenda & Lim, Andrew & Zhang, Lei & Zhu, Yi, 2012. "An investigation into the vehicle routing problem with time windows and link capacity constraints," Omega, Elsevier, vol. 40(3), pages 336-347.
    19. Tai-Yu Ma, 2011. "A cross entropy multiagent learning algorithm for solving vehicle routing problems with time windows," Post-Print halshs-00592118, HAL.
    20. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:60-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.