IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v47y2024i2d10.1007_s10878-024-01109-x.html
   My bibliography  Save this article

A linear ordering problem with weighted rank

Author

Listed:
  • Manuel V. C. Vieira

    (NOVA School of Science and Technology)

Abstract

This paper introduces an integer linear program for a variant of the linear ordering problem. This considers, besides the pairwise preferences in the objective function as the linear ordering problem, positional preferences (weighted rank) in the objective. The objective function is mathematically supported, as the full integer linear program is motivated by the instant run-off voting method to aggregate individual preferences. The paper describes two meta-heuristics, iterated local search and Memetic algorithms to deal with large instances which are hard to solve to optimality. These results are compared with the objective value of the linear relaxation. The instances used are the ones available from the LOP library, and new real instances with preferences given by juries.

Suggested Citation

  • Manuel V. C. Vieira, 2024. "A linear ordering problem with weighted rank," Journal of Combinatorial Optimization, Springer, vol. 47(2), pages 1-24, March.
  • Handle: RePEc:spr:jcomop:v:47:y:2024:i:2:d:10.1007_s10878-024-01109-x
    DOI: 10.1007/s10878-024-01109-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01109-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01109-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duarte, Abraham & Martí, Rafael & Álvarez, Ada & Ángel-Bello, Francisco, 2012. "Metaheuristics for the linear ordering problem with cumulative costs," European Journal of Operational Research, Elsevier, vol. 216(2), pages 270-277.
    2. Javier Alcaraz & Eva M. García-Nové & Mercedes Landete & Juan F. Monge, 2020. "The linear ordering problem with clusters: a new partial ranking," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 646-671, October.
    3. Juan Aparicio & Mercedes Landete & Juan F. Monge, 2020. "A linear ordering problem of sets," Annals of Operations Research, Springer, vol. 288(1), pages 45-64, May.
    4. Ceberio, Josu & Mendiburu, Alexander & Lozano, Jose A., 2015. "The linear ordering problem revisited," European Journal of Operational Research, Elsevier, vol. 241(3), pages 686-696.
    5. Irène Charon & Olivier Hudry, 2010. "An updated survey on the linear ordering problem for weighted or unweighted tournaments," Annals of Operations Research, Springer, vol. 175(1), pages 107-158, March.
    6. Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1984. "A Cutting Plane Algorithm for the Linear Ordering Problem," Operations Research, INFORMS, vol. 32(6), pages 1195-1220, December.
    7. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Labbé, Martine & Landete, Mercedes & Monge, Juan F., 2023. "Bilevel integer linear models for ranking items and sets," Operations Research Perspectives, Elsevier, vol. 10(C).
    2. Rajeev Kohli & Khaled Boughanmi & Vikram Kohli, 2019. "Randomized Algorithms for Lexicographic Inference," Operations Research, INFORMS, vol. 67(2), pages 357-375, March.
    3. Thierry Denœux & Marie-Hélène Masson, 2012. "Evidential reasoning in large partially ordered sets," Annals of Operations Research, Springer, vol. 195(1), pages 135-161, May.
    4. Jose Apesteguia & Miguel A. Ballester, 2015. "A Measure of Rationality and Welfare," Journal of Political Economy, University of Chicago Press, vol. 123(6), pages 1278-1310.
    5. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    6. Miles William W & Fowks Gary T & Coulter Lisa O, 2010. "AccuV College Football Ranking Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
    7. Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
    8. Jean-Paul Doignon & Kota Saito, 2022. "Adjacencies on random ordering polytopes and flow polytopes," Papers 2207.06925, arXiv.org.
    9. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    10. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    11. Aardal, K. & van Hoesel, C.P.M., 1995. "Polyhedral techniques in combinatorial optimization," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    12. Azzini, Ivano & Munda, Giuseppe, 2020. "A new approach for identifying the Kemeny median ranking," European Journal of Operational Research, Elsevier, vol. 281(2), pages 388-401.
    13. Jessica Rodríguez-Pereira & Gilbert Laporte, 2022. "The target visitation arc routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 60-76, April.
    14. P. Detti & D. Pacciarelli, 2001. "A branch and bound algorithm for the minimum storage‐time sequencing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(4), pages 313-331, June.
    15. Olivier Hudry & Bernard Monjardet, 2010. "Consensus theories: An oriented survey," Documents de travail du Centre d'Economie de la Sorbonne 10057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Junqi Liu & Zeqiang Zhang & Feng Chen & Silu Liu & Lixia Zhu, 2022. "A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 953-972, April.
    17. B. Jay Coleman, 2005. "Minimizing Game Score Violations in College Football Rankings," Interfaces, INFORMS, vol. 35(6), pages 483-496, December.
    18. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    19. Vianney Coppé & Xavier Gillard & Pierre Schaus, 2024. "Decision Diagram-Based Branch-and-Bound with Caching for Dominance and Suboptimality Detection," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1522-1542, December.
    20. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:47:y:2024:i:2:d:10.1007_s10878-024-01109-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.