IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v55y2013i1p1-20.html
   My bibliography  Save this article

A computational study and survey of methods for the single-row facility layout problem

Author

Listed:
  • Philipp Hungerländer
  • Franz Rendl

Abstract

The single-row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange rectangular departments so as to minimize the overall interaction cost. This paper compares the different modelling approaches for (SRFLP) and applies a recent SDP approach for general quadratic ordering problems from Hungerländer and Rendl to (SRFLP). In particular, we report optimal solutions for several (SRFLP) instances from the literature with up to 42 departments that remained unsolved so far. Secondly we significantly reduce the best known gaps and running times for large instances with up to 110 departments. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
  • Handle: RePEc:spr:coopap:v:55:y:2013:i:1:p:1-20
    DOI: 10.1007/s10589-012-9505-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9505-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9505-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heragu, Sunderesh S. & Kusiak, Andrew, 1991. "Efficient models for the facility layout problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 1-13, July.
    2. Miguel F. Anjos & Frauke Liers, 2012. "Global Approaches for Facility Layout and VLSI Floorplanning," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 849-877, Springer.
    3. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
    4. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    5. Kenneth M. Hall, 1970. "An r-Dimensional Quadratic Placement Algorithm," Management Science, INFORMS, vol. 17(3), pages 219-229, November.
    6. Sunderesh S. Heragu & Andrew Kusiak, 1988. "Machine Layout Problem in Flexible Manufacturing Systems," Operations Research, INFORMS, vol. 36(2), pages 258-268, April.
    7. Samarghandi, Hamed & Eshghi, Kourosh, 2010. "An efficient tabu algorithm for the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 98-105, August.
    8. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.
    9. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    10. Jean-Claude Picard & Maurice Queyranne, 1981. "On the One-Dimensional Space Allocation Problem," Operations Research, INFORMS, vol. 29(2), pages 371-391, April.
    11. Donald M. Simmons, 1969. "One-Dimensional Space Allocation: An Ordering Algorithm," Operations Research, INFORMS, vol. 17(5), pages 812-826, October.
    12. Amaral, Andre R.S., 2006. "On the exact solution of a facility layout problem," European Journal of Operational Research, Elsevier, vol. 173(2), pages 508-518, September.
    13. Fischer, I. & Gruber, G. & Rendl, F. & Sotirov, R., 2006. "Computational experience with a bundle approach for semidenfinite cutting plane relaxations of max-cut and equipartition," Other publications TiSEM 03dfd8c3-9216-4c75-8921-3, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    2. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    3. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    4. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
    5. Gintaras Palubeckis & Armantas Ostreika & Jūratė Platužienė, 2022. "A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    6. Wu, Song & Yang, Wei & Hanafi, Saïd & Wilbaut, Christophe & Wang, Yang, 2024. "Iterated local search with ejection chains for the space-free multi-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 316(3), pages 873-886.
    7. Palubeckis, Gintaras, 2015. "Fast simulated annealing for single-row equidistant facility layout," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 287-301.
    8. Dahlbeck, Mirko, 2021. "A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem," European Journal of Operational Research, Elsevier, vol. 295(2), pages 443-462.
    9. Junqi Liu & Zeqiang Zhang & Feng Chen & Silu Liu & Lixia Zhu, 2022. "A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 953-972, April.
    10. Xie, Yue & Zhou, Shenghan & Xiao, Yiyong & Kulturel-Konak, Sadan & Konak, Abdullah, 2018. "A β-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics," European Journal of Operational Research, Elsevier, vol. 265(1), pages 26-38.
    11. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    12. Anjos, Miguel F. & Fischer, Anja & Hungerländer, Philipp, 2018. "Improved exact approaches for row layout problems with departments of equal length," European Journal of Operational Research, Elsevier, vol. 270(2), pages 514-529.
    13. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
    14. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uma Kothari & Diptesh Ghosh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," Working Papers id:4915, eSocialSciences.
    2. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    3. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    4. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
    5. Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
    6. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    7. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    8. Kothari, Ravi & Ghosh, Diptesh, 2012. "Path Relinking for Single Row Facility Layout," IIMA Working Papers WP2012-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Ramazan Şahin & Sadegh Niroomand & Esra Duygu Durmaz & Saber Molla-Alizadeh-Zavardehi, 2020. "Mathematical formulation and hybrid meta-heuristic solution approaches for dynamic single row facility layout problem," Annals of Operations Research, Springer, vol. 295(1), pages 313-336, December.
    10. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    11. Kothari, Ravi & Ghosh, Diptesh, 2012. "A Lin-Kernighan Heuristic for Single Row Facility Layout," IIMA Working Papers WP2012-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.
    13. Kothari, Ravi & Ghosh, Diptesh, 2012. "Tabu Search for the Single Row Facility Layout Problem in FMS using a 3-opt Neighborhood," IIMA Working Papers WP2012-02-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Kothari, Ravi & Ghosh, Diptesh, 2012. "Scatter Search Algorithms for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    15. Kothari, Ravi & Ghosh, Diptesh, 2011. "The Single Row Facility Layout Problem: State of the Art," IIMA Working Papers WP2011-12-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    17. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    18. Samarghandi, Hamed & Eshghi, Kourosh, 2010. "An efficient tabu algorithm for the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 98-105, August.
    19. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    20. Dahlbeck, Mirko, 2021. "A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem," European Journal of Operational Research, Elsevier, vol. 295(2), pages 443-462.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:55:y:2013:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.