IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i3p629-644.html
   My bibliography  Save this article

Single row layout models

Author

Listed:
  • Keller, Birgit
  • Buscher, Udo

Abstract

The single row layout problem (SRLP) consists of finding the most efficient arrangement of a given number of facilities or machines along one side of the material handling path, a topic that has enjoyed lasting interest for the past 45 years. As well as for use in manufacturing environments, the SRLP can serve to arrange rooms along a corridor in, e.g., hospitals and supermarkets. Besides its practical relevance, the problem is also interesting from a formal point of view due to its NP-hardness and therefore attracts the attention of many researchers. Beginning with the year 2000, this paper systematically reviews 82 articles focusing on single row layout problems. After featuring the relevance and timeliness, the SRLP is first positioned within the superordinate facility layout problem (FLP). Thereafter, the articles are classified according to topic of the paper, model formulation and representation, type of input data, objective function, and solution methods. We pay particular attention to recent developments in model formulation and solution methods to elaborate some possible directions and opportunities for further research.

Suggested Citation

  • Keller, Birgit & Buscher, Udo, 2015. "Single row layout models," European Journal of Operational Research, Elsevier, vol. 245(3), pages 629-644.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:3:p:629-644
    DOI: 10.1016/j.ejor.2015.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171500209X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asef-Vaziri, Ardavan & Laporte, Gilbert, 2005. "Loop based facility planning and material handling," European Journal of Operational Research, Elsevier, vol. 164(1), pages 1-11, July.
    2. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    3. Heragu, Sunderesh S. & Kusiak, Andrew, 1991. "Efficient models for the facility layout problem," European Journal of Operational Research, Elsevier, vol. 53(1), pages 1-13, July.
    4. Kaku, Bharat K. & Rachamadugu, Ram, 1992. "Layout design for flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 57(2), pages 224-230, March.
    5. Wai Kin Victor Chan & Charles J. Malmborg, 2010. "Monte Carlo simulation methods for dynamic line layout problems with nonlinear movement costs," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 4(1), pages 40-58.
    6. Bhaba Sarker & Wilbert Wilhelm & Gary Hogg, 1998. "Locating sets of identical machines in a linear layout," Annals of Operations Research, Springer, vol. 77(0), pages 183-207, January.
    7. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.
    8. Yu, Junfang & Sarker, Bhaba R., 2003. "Directional decomposition heuristic for a linear machine-cell location problem," European Journal of Operational Research, Elsevier, vol. 149(1), pages 142-184, August.
    9. Kouvelis, P & Chiang, W-C & Kiran, AS, 1992. "A survey of layout issues in flexible manufacturing systems," Omega, Elsevier, vol. 20(3), pages 375-390, May.
    10. Miguel F. Anjos & Anthony Vannelli, 2006. "On the Computational Performance of a Semidefinite Programming Approach to Single Row Layout Problems," Operations Research Proceedings, in: Hans-Dietrich Haasis & Herbert Kopfer & Jörn Schönberger (ed.), Operations Research Proceedings 2005, pages 277-282, Springer.
    11. Miguel F. Anjos & Anthony Vannelli, 2008. "Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 611-617, November.
    12. A Diponegoro & B R Sarker, 2003. "Machine assignment in a nonlinear multi-product flowline," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 472-489, May.
    13. Kothari, Ravi & Ghosh, Diptesh, 2011. "The Single Row Facility Layout Problem: State of the Art," IIMA Working Papers WP2011-12-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    14. Jean-Claude Picard & Maurice Queyranne, 1981. "On the One-Dimensional Space Allocation Problem," Operations Research, INFORMS, vol. 29(2), pages 371-391, April.
    15. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    16. Solimanpur, M. & Vrat, P. & Shankar, R., 2004. "Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 157(3), pages 592-606, September.
    17. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    18. Ali Azadeh & Maryam Nouri Roozbahani & Mohsen Moghaddam, 2013. "Optimisation of complex and large-sized single-row facility layout problems with a unique hybrid meta-heuristic framework," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(1), pages 38-67.
    19. Sarker, Bhaba R. & Wilhelm, Wilbert E. & Hogg, Gary L. & Han, Min-Hong, 1995. "Backtracking of jobs in one-dimensional machine location problems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 593-609, September.
    20. Sunderesh S. Heragu & Andrew Kusiak, 1988. "Machine Layout Problem in Flexible Manufacturing Systems," Operations Research, INFORMS, vol. 36(2), pages 258-268, April.
    21. Samarghandi, Hamed & Eshghi, Kourosh, 2010. "An efficient tabu algorithm for the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 98-105, August.
    22. Donald M. Simmons, 1969. "One-Dimensional Space Allocation: An Ordering Algorithm," Operations Research, INFORMS, vol. 17(5), pages 812-826, October.
    23. Amaral, Andre R.S., 2006. "On the exact solution of a facility layout problem," European Journal of Operational Research, Elsevier, vol. 173(2), pages 508-518, September.
    24. Kothari, Ravi & Ghosh, Diptesh, 2012. "Path Relinking for Single Row Facility Layout," IIMA Working Papers WP2012-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    25. Ghosh, Diptesh, 2011. "An Exponential Neighborhood Local Search Algorithm for the Single Row Facility Location Problem," IIMA Working Papers WP2011-08-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    26. Kothari, Ravi & Ghosh, Diptesh, 2012. "Sensitivity Analysis for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    27. Azadeh, A. & Moghaddam, M. & Asadzadeh, S.M. & Negahban, A., 2011. "An integrated fuzzy simulation-fuzzy data envelopment analysis algorithm for job-shop layout optimization: The case of injection process with ambiguous data," European Journal of Operational Research, Elsevier, vol. 214(3), pages 768-779, November.
    28. Yang, Taho & Peters, Brett A., 1998. "Flexible machine layout design for dynamic and uncertain production environments," European Journal of Operational Research, Elsevier, vol. 108(1), pages 49-64, July.
    29. Diponegoro, Ahmad & Sarker, Bhaba R., 2003. "Flow distance reduction for a multi-product flowline with sets of identical machines," European Journal of Operational Research, Elsevier, vol. 147(3), pages 591-612, June.
    30. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    31. Heragu, Sunderesh S., 1992. "Recent models and techniques for solving the layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 136-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    2. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    3. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    4. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    5. Anjos, Miguel F. & Fischer, Anja & Hungerländer, Philipp, 2018. "Improved exact approaches for row layout problems with departments of equal length," European Journal of Operational Research, Elsevier, vol. 270(2), pages 514-529.
    6. Gintaras Palubeckis & Armantas Ostreika & Jūratė Platužienė, 2022. "A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    7. Pourvaziri, Hani & Pierreval, Henri, 2017. "Dynamic facility layout problem based on open queuing network theory," European Journal of Operational Research, Elsevier, vol. 259(2), pages 538-553.
    8. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    9. Dahlbeck, Mirko, 2021. "A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem," European Journal of Operational Research, Elsevier, vol. 295(2), pages 443-462.
    10. Andreas Hottenrott & Martin Grunow, 2019. "Flexible layouts for the mixed-model assembly of heterogeneous vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 943-979, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    2. Palubeckis, Gintaras, 2015. "Fast local search for single row facility layout," European Journal of Operational Research, Elsevier, vol. 246(3), pages 800-814.
    3. Guan, Jian & Lin, Geng, 2016. "Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 899-909.
    4. Hungerländer, Philipp & Anjos, Miguel F., 2015. "A semidefinite optimization-based approach for global optimization of multi-row facility layout," European Journal of Operational Research, Elsevier, vol. 245(1), pages 46-61.
    5. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank, 2020. "Decorous combinatorial lower bounds for row layout problems," European Journal of Operational Research, Elsevier, vol. 286(3), pages 929-944.
    6. Uma Kothari & Diptesh Ghosh, 2012. "A Competitive Genetic Algorithm for Single Row Facility Layout," Working Papers id:4915, eSocialSciences.
    7. Kothari, Ravi & Ghosh, Diptesh, 2013. "Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods," European Journal of Operational Research, Elsevier, vol. 224(1), pages 93-100.
    8. Kothari, Ravi & Ghosh, Diptesh, 2012. "A Lin-Kernighan Heuristic for Single Row Facility Layout," IIMA Working Papers WP2012-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Philipp Hungerländer & Franz Rendl, 2013. "A computational study and survey of methods for the single-row facility layout problem," Computational Optimization and Applications, Springer, vol. 55(1), pages 1-20, May.
    10. Dahlbeck, Mirko, 2021. "A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem," European Journal of Operational Research, Elsevier, vol. 295(2), pages 443-462.
    11. Kothari, Ravi & Ghosh, Diptesh, 2012. "Scatter Search Algorithms for the Single Row Facility Layout Problem," IIMA Working Papers WP2012-04-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. A. R. S. Amaral, 2022. "A heuristic approach for the double row layout problem," Annals of Operations Research, Springer, vol. 316(2), pages 1-36, September.
    13. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    14. Junqi Liu & Zeqiang Zhang & Feng Chen & Silu Liu & Lixia Zhu, 2022. "A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 953-972, April.
    15. Kothari, Ravi & Ghosh, Diptesh, 2012. "Tabu Search for the Single Row Facility Layout Problem in FMS using a 3-opt Neighborhood," IIMA Working Papers WP2012-02-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Kothari, Ravi & Ghosh, Diptesh, 2012. "Path Relinking for Single Row Facility Layout," IIMA Working Papers WP2012-05-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    17. Ramazan Şahin & Sadegh Niroomand & Esra Duygu Durmaz & Saber Molla-Alizadeh-Zavardehi, 2020. "Mathematical formulation and hybrid meta-heuristic solution approaches for dynamic single row facility layout problem," Annals of Operations Research, Springer, vol. 295(1), pages 313-336, December.
    18. Ahonen, H. & de Alvarenga, A.G. & Amaral, A.R.S., 2014. "Simulated annealing and tabu search approaches for the Corridor Allocation Problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 221-233.
    19. Datta, Dilip & Amaral, André R.S. & Figueira, José Rui, 2011. "Single row facility layout problem using a permutation-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 213(2), pages 388-394, September.
    20. Kothari, Ravi & Ghosh, Diptesh, 2011. "The Single Row Facility Layout Problem: State of the Art," IIMA Working Papers WP2011-12-02, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:3:p:629-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.