IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v222y2012i3p418-429.html
   My bibliography  Save this article

Wavelength assignment for reducing in-band crosstalk attack propagation in optical networks: ILP formulations and heuristic algorithms

Author

Listed:
  • Skorin-Kapov, Nina
  • Furdek, Marija
  • Aparicio Pardo, Ramon
  • Mariño, Pablo Pavón

Abstract

Today’s Transparent Optical Networks (TONs) are highly vulnerable to various physical-layer attacks, such as high-power jamming, which can cause severe service disruption or even service denial. The transparency of TONs enables certain attacks to propagate through the network, not only increasing their damage proportions, but also making source identification and attack localization more difficult. High-power jamming attacks causing in-band crosstalk in switches are amongst the most malicious of such attacks. In this paper, we propose a wavelength assignment scheme to reduce their damage assuming limited attack propagation capabilities. This complements our previous work in Furdek et al. (M. Furdek, N. Skorin-Kapov, M. Grbac, Attack-aware wavelength assignment for localization of in-band crosstalk attack propagation, IEEE/OSA Journal of Optical Communications and Networking 2 (11) (2010) 1000–1009) where we investigated infinite jamming attack propagation to find an upper bound on the network vulnerability to such attacks. Here, we consider a more realistic scenario where crosstalk attacks can spread only via primary and/or secondary attackers and define new objective criteria for wavelength assignment, called the PAR (Primary Attack Radius) and SAR (Secondary Attack Radius), accordingly. We formulate the problem variants as integer linear programs (ILPs) with the objectives of minimizing the PAR and SAR values. Due to the intractability of the ILP formulations, for larger instances we propose GRASP (Greedy Randomized Adaptive Search Procedure) heuristic algorithms to find suboptimal solutions in reasonable time. Results show that these approaches can obtain solutions using the same number of wavelengths as classical wavelength assignment, while significantly reducing jamming attack damage proportions in optical networks.

Suggested Citation

  • Skorin-Kapov, Nina & Furdek, Marija & Aparicio Pardo, Ramon & Mariño, Pablo Pavón, 2012. "Wavelength assignment for reducing in-band crosstalk attack propagation in optical networks: ILP formulations and heuristic algorithms," European Journal of Operational Research, Elsevier, vol. 222(3), pages 418-429.
  • Handle: RePEc:eee:ejores:v:222:y:2012:i:3:p:418-429
    DOI: 10.1016/j.ejor.2012.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712003712
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Skorin-Kapov, Nina, 2007. "Routing and wavelength assignment in optical networks using bin packing based algorithms," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1167-1179, March.
    2. Mauricio G.C. Resende & Celso C. Ribeiro, 2010. "Greedy Randomized Adaptive Search Procedures: Advances, Hybridizations, and Applications," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 283-319, Springer.
    3. Thiago Noronha & Mauricio Resende & Celso Ribeiro, 2011. "A biased random-key genetic algorithm for routing and wavelength assignment," Journal of Global Optimization, Springer, vol. 50(3), pages 503-518, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olaizola, Norma & Valenciano, Federico, 2014. "Asymmetric flow networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 566-579.
      • Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2012. "Asymmetric flow networks," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    2. Agarwal, Y.K. & Venkateshan, Prahalad, 2016. "Near optimal design of wavelength routed optical networks," European Journal of Operational Research, Elsevier, vol. 250(3), pages 990-1000.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julliany S. Brandão & Thiago F. Noronha & Celso C. Ribeiro, 2016. "A biased random-key genetic algorithm to maximize the number of accepted lightpaths in WDM optical networks," Journal of Global Optimization, Springer, vol. 65(4), pages 813-835, August.
    2. Xinyun Wu & Shengfeng Yan & Xin Wan & Zhipeng Lü, 2016. "Multi-neighborhood based iterated tabu search for routing and wavelength assignment problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 445-468, August.
    3. Fabrizio Altarelli & Alfredo Braunstein & Luca Dall’Asta & Caterina De Bacco & Silvio Franz, 2015. "The Edge-Disjoint Path Problem on Random Graphs by Message-Passing," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-18, December.
    4. Christophe Duhamel & Philippe Mahey & Alexandre X. Martins & Rodney R. Saldanha & Mauricio C. Souza, 2016. "Model-hierarchical column generation and heuristic for the routing and wavelength assignment problem," 4OR, Springer, vol. 14(2), pages 201-220, June.
    5. Fernando Stefanello & Vaneet Aggarwal & Luciana S. Buriol & Mauricio G. C. Resende, 2019. "Hybrid algorithms for placement of virtual machines across geo-separated data centers," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 748-793, October.
    6. Bruno Q. Pinto & Celso C. Ribeiro & Isabel Rosseti & Thiago F. Noronha, 2020. "A biased random-key genetic algorithm for routing and wavelength assignment under a sliding scheduled traffic model," Journal of Global Optimization, Springer, vol. 77(4), pages 949-973, August.
    7. Musmanno, Leonardo M. & Ribeiro, Celso C., 2016. "Heuristics for the generalized median graph problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 371-384.
    8. Belgacem, Lucile & Charon, Irène & Hudry, Olivier, 2014. "A post-optimization method for the routing and wavelength assignment problem applied to scheduled lightpath demands," European Journal of Operational Research, Elsevier, vol. 232(2), pages 298-306.
    9. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    10. Jonatas B. C. Chagas & Julian Blank & Markus Wagner & Marcone J. F. Souza & Kalyanmoy Deb, 2021. "A non-dominated sorting based customized random-key genetic algorithm for the bi-objective traveling thief problem," Journal of Heuristics, Springer, vol. 27(3), pages 267-301, June.
    11. Xiaoyu Yu & Jingyi Qian & Yajing Zhang & Min Kong, 2023. "Supply Chain Scheduling Method for the Coordination of Agile Production and Port Delivery Operation," Mathematics, MDPI, vol. 11(15), pages 1-24, July.
    12. Amiyne Zakouni & Jiawei Luo & Fouad Kharroubi, 2017. "Genetic algorithm and tabu search algorithm for solving the static manycast RWA problem in optical networks," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 726-741, February.
    13. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    14. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    15. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    16. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    17. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    18. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    19. Pedro Pinacho-Davidson & Christian Blum, 2020. "Barrakuda : A Hybrid Evolutionary Algorithm for Minimum Capacitated Dominating Set Problem," Mathematics, MDPI, vol. 8(11), pages 1-26, October.
    20. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:222:y:2012:i:3:p:418-429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.