IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i1p17-30.html
   My bibliography  Save this article

The Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking and its real-world applications

Author

Listed:
  • Andrade, Carlos E.
  • Toso, Rodrigo F.
  • Gonçalves, José F.
  • Resende, Mauricio G.C.

Abstract

In this paper, we present the Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking (BRKGA-MP-IPR), a variant of the Biased Random-Key Genetic Algorithm that employs multiple (biased) parents to generate offspring instead of the usual two, and is hybridized with a novel, implicit path-relinking local search procedure. By operating over the standard unit hypercube, such path-relinking mechanism leverages the population representation of the BRKGA and thus provides complete independence between the local search procedure and the problem definition and implementation. This approach contrasts with traditional path-relinking procedures that are tied to the problem structure. Having both BRKGA and IPR operate over the same solution space not only makes the intensification/diversification paradigm more natural but also greatly simplifies the development effort from the perspective of the practitioner, as one only needs to develop a decoder to map unit random-key vectors to the solution space of the problem on hand. Apart from such key benefits, extensive computational experiments solving real-world problems, such as over-the-air software upgrade scheduling, network design problems, and combinatorial auctions, show that the BRKGA-MP-IPR offers performance benefits over the standard BRKGA as well as the BRKGA with multiple parents.

Suggested Citation

  • Andrade, Carlos E. & Toso, Rodrigo F. & Gonçalves, José F. & Resende, Mauricio G.C., 2021. "The Multi-Parent Biased Random-Key Genetic Algorithm with Implicit Path-Relinking and its real-world applications," European Journal of Operational Research, Elsevier, vol. 289(1), pages 17-30.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:1:p:17-30
    DOI: 10.1016/j.ejor.2019.11.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.
    2. M. Ericsson & M.G.C. Resende & P.M. Pardalos, 2002. "A Genetic Algorithm for the Weight Setting Problem in OSPF Routing," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 299-333, September.
    3. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    4. Thiago Noronha & Mauricio Resende & Celso Ribeiro, 2011. "A biased random-key genetic algorithm for routing and wavelength assignment," Journal of Global Optimization, Springer, vol. 50(3), pages 503-518, July.
    5. Caserta, Marco & Reiners, Torsten, 2016. "A pool-based pattern generation algorithm for logical analysis of data with automatic fine-tuning," European Journal of Operational Research, Elsevier, vol. 248(2), pages 593-606.
    6. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giménez-Palacios, Iván & Parreño, Francisco & Álvarez-Valdés, Ramón & Paquay, Célia & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "First-mile logistics parcel pickup: Vehicle routing with packing constraints under disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Mecler, Davi & Abu-Marrul, Victor & Martinelli, Rafael & Hoff, Arild, 2022. "Iterated greedy algorithms for a complex parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 300(2), pages 545-560.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Leonardo Cabral R. & Carvalho, Marco Antonio M., 2020. "Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 955-964.
    2. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    3. Gonçalves, José Fernando & Resende, Mauricio G.C., 2015. "A biased random-key genetic algorithm for the unequal area facility layout problem," European Journal of Operational Research, Elsevier, vol. 246(1), pages 86-107.
    4. F. Stefanello & L. S. Buriol & M. J. Hirsch & P. M. Pardalos & T. Querido & M. G. C. Resende & M. Ritt, 2017. "On the minimization of traffic congestion in road networks with tolls," Annals of Operations Research, Springer, vol. 249(1), pages 119-139, February.
    5. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    6. L. A. C. Roque & D. B. M. M. Fontes & F. A. C. C. Fontes, 2014. "A hybrid biased random key genetic algorithm approach for the unit commitment problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 140-166, July.
    7. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    8. Julliany S. Brandão & Thiago F. Noronha & Celso C. Ribeiro, 2016. "A biased random-key genetic algorithm to maximize the number of accepted lightpaths in WDM optical networks," Journal of Global Optimization, Springer, vol. 65(4), pages 813-835, August.
    9. Geiza Silva & André Leite & Raydonal Ospina & Víctor Leiva & Jorge Figueroa-Zúñiga & Cecilia Castro, 2023. "Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem," Mathematics, MDPI, vol. 11(14), pages 1-11, July.
    10. Pinto, Bruno Q. & Ribeiro, Celso C. & Rosseti, Isabel & Plastino, Alexandre, 2018. "A biased random-key genetic algorithm for the maximum quasi-clique problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 849-865.
    11. R. M. A. Silva & M. G. C. Resende & P. M. Pardalos, 2015. "A Python/C++ library for bound-constrained global optimization using a biased random-key genetic algorithm," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 710-728, October.
    12. Caio César Freitas & Dario José Aloise & Fábio Francisco Costa Fontes & Andréa Cynthia Santos & Matheus Silva Menezes, 2023. "A biased random-key genetic algorithm for the two-level hub location routing problem with directed tours," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 903-924, September.
    13. Ayşegül Altın & Bernard Fortz & Mikkel Thorup & Hakan Ümit, 2013. "Intra-domain traffic engineering with shortest path routing protocols," Annals of Operations Research, Springer, vol. 204(1), pages 65-95, April.
    14. Pessoa, Luciana S. & Andrade, Carlos E., 2018. "Heuristics for a flowshop scheduling problem with stepwise job objective function," European Journal of Operational Research, Elsevier, vol. 266(3), pages 950-962.
    15. Ghorashi Khalilabadi, S. M. & Roy, D. & de Koster, M.B.M., 2022. "A Data-driven Approach to Enhance Worker Productivity by Optimizing Facility Layout," ERIM Report Series Research in Management ERS-2022-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Fernando Stefanello & Vaneet Aggarwal & Luciana S. Buriol & Mauricio G. C. Resende, 2019. "Hybrid algorithms for placement of virtual machines across geo-separated data centers," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 748-793, October.
    17. Edson Ticona-Zegarra & Rafael CS Schouery & Leandro A Villas & Flávio K Miyazawa, 2018. "Improved continuous enhancement routing solution for energy-aware data aggregation in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 14(5), pages 15501477187, May.
    18. Li, Xueping & Zhang, Kaike, 2018. "Single batch processing machine scheduling with two-dimensional bin packing constraints," International Journal of Production Economics, Elsevier, vol. 196(C), pages 113-121.
    19. Bruno Q. Pinto & Celso C. Ribeiro & Isabel Rosseti & Thiago F. Noronha, 2020. "A biased random-key genetic algorithm for routing and wavelength assignment under a sliding scheduled traffic model," Journal of Global Optimization, Springer, vol. 77(4), pages 949-973, August.
    20. Paola Festa & Panos Pardalos, 2012. "Efficient solutions for the far from most string problem," Annals of Operations Research, Springer, vol. 196(1), pages 663-682, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:1:p:17-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.