The irace package: Iterated racing for automatic algorithm configuration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.orp.2016.09.002
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Chen, Yuning & Hao, Jin-Kao & Glover, Fred, 2016. "A hybrid metaheuristic approach for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 25-39.
- Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
- Mark Zlochin & Mauro Birattari & Nicolas Meuleau & Marco Dorigo, 2004. "Model-Based Search for Combinatorial Optimization: A Critical Survey," Annals of Operations Research, Springer, vol. 131(1), pages 373-395, October.
- Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
- Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
- Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Diego Pecin & Eduardo Uchoa, 2019. "Comparative Analysis of Capacitated Arc Routing Formulations for Designing a New Branch-Cut-and-Price Algorithm," Transportation Science, INFORMS, vol. 53(6), pages 1673-1694, November.
- Jiaqiao Hu & Hyeong Chang & Michael Fu & Steven Marcus, 2011. "Dynamic sample budget allocation in model-based optimization," Journal of Global Optimization, Springer, vol. 50(4), pages 575-596, August.
- Qiu, Qinjing & Kawai, Reiichiro, 2022. "A decoupling principle for Markov-modulated chains," Statistics & Probability Letters, Elsevier, vol. 182(C).
- Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
- Hongwen Guo & Mo Zhang & Paul Deane & Randy E. Bennett, 2019. "Writing Process Differences in Subgroups Reflected in Keystroke Logs," Journal of Educational and Behavioral Statistics, , vol. 44(5), pages 571-596, October.
- Mehravaran, Yasaman & Logendran, Rasaratnam, 2012. "Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 135(2), pages 953-963.
- Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
- Ardo van den Hout & Jutta Gampe & Fiona Matthews & Ekaterina Ogurtsova, 2014. "Investigating healthy life expectancy using a multi-state model in the presence of missing data and misclassification," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(42), pages 1219-1244.
- M. Shakibayifar & A. Sheikholeslami & F. Corman & E. Hassannayebi, 2020. "An integrated rescheduling model for minimizing train delays in the case of line blockage," Operational Research, Springer, vol. 20(1), pages 59-87, March.
- Vernon T. Farewell & Li Su & Christopher Jackson, 2019. "Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 696-711, October.
- Blaser, Nello & Vizcaya, Luisa Salazar & Estill, Janne & Zahnd, Cindy & Kalesan, Bindu & Egger, Matthias & Gsponer, Thomas & Keiser, Olivia, 2015. "gems: An R Package for Simulating from Disease Progression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i10).
- Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
- Federico Della Croce & Andrea Grosso & Fabio Salassa, 2014. "A matheuristic approach for the two-machine total completion time flow shop problem," Annals of Operations Research, Springer, vol. 213(1), pages 67-78, February.
- Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
- Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
- Gaffney, Edward & McCann, Fergal, 2019. "The cyclicality in SICR: mortgage modelling under IFRS 9," ESRB Working Paper Series 92, European Systemic Risk Board.
- Framinan, Jose M. & Perez-Gonzalez, Paz, 2015. "On heuristic solutions for the stochastic flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 413-420.
- Wenxing Wu & Jing Xun & Jiateng Yin & Shibo He & Haifeng Song & Zicong Zhao & Shicong Hao, 2023. "An Integrated Method for Reducing Arrival Interval by Optimizing Train Operation and Route Setting," Mathematics, MDPI, vol. 11(20), pages 1-20, October.
- Król, Agnieszka & Saint-Pierre, Philippe, 2015. "SemiMarkov: An R Package for Parametric Estimation in Multi-State Semi-Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i06).
- López-Ibáñez, Manuel & Stützle, Thomas, 2014. "Automatically improving the anytime behaviour of optimisation algorithms," European Journal of Operational Research, Elsevier, vol. 235(3), pages 569-582.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:3:y:2016:i:c:p:43-58. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/oprepe/v3y2016icp43-58.html