IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v248y2016i3p772-788.html
   My bibliography  Save this article

Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption

Author

Listed:
  • Mansouri, S. Afshin
  • Aktas, Emel
  • Besikci, Umut

Abstract

Sustainability considerations in manufacturing scheduling, which is traditionally influenced by service oriented performance metrics, have rarely been adopted in the literature. This paper aims to address this gap by incorporating energy consumption as an explicit criterion in shop floor scheduling. Leveraging the variable speed of machining operations leading to different energy consumption levels, we explore the potential for energy saving in manufacturing. We analyze the trade-off between minimizing makespan, a measure of service level and total energy consumption, an indicator for environmental sustainability of a two-machine sequence dependent permutation flowshop. We develop a mixed integer linear multi-objective optimization model to find the Pareto frontier comprised of makespan and total energy consumption. To cope with combinatorial complexity, we also develop a constructive heuristic for fast trade-off analysis between makespan and energy consumption. We define lower bounds for the two objectives under some non-restrictive conditions and compare the performance of the constructive heuristic with CPLEX through design of experiments. The lower bounds that we develop are valid under realistic assumptions since they are conditional on speed factors. The Pareto frontier includes solutions ranging from expedited, energy intensive schedules to prolonged, energy efficient schedules. It can serve as a visual aid for production and sales planners to consider energy consumption explicitly in making quick decisions while negotiating with customers on due dates. We provide managerial insights by analyzing the areas along the Pareto frontier where energy saving can be justified at the expense of reduced service level and vice versa.

Suggested Citation

  • Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
  • Handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:772-788
    DOI: 10.1016/j.ejor.2015.08.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.08.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yazdani Sabouni, M.T. & Logendran, Rasaratnam, 2013. "Carryover sequence-dependent group scheduling with the integration of internal and external setup times," European Journal of Operational Research, Elsevier, vol. 224(1), pages 8-22.
    2. Xiting Gong & Sean X. Zhou, 2013. "Optimal Production Planning with Emissions Trading," Operations Research, INFORMS, vol. 61(4), pages 908-924, August.
    3. A. Agnetis & P. Detti & C. Meloni & D. Pacciarelli, 2001. "Set-Up Coordination between Two Stages of a Supply Chain," Annals of Operations Research, Springer, vol. 107(1), pages 15-32, October.
    4. Tan, K.C. & Goh, C.K. & Yang, Y.J. & Lee, T.H., 2006. "Evolving better population distribution and exploration in evolutionary multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 171(2), pages 463-495, June.
    5. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
    6. Qi, Xiangtong & Song, Dong-Ping, 2012. "Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 863-880.
    7. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    8. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2005. "Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics," European Journal of Operational Research, Elsevier, vol. 165(1), pages 34-54, August.
    9. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    10. Taillard, E., 1990. "Some efficient heuristic methods for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 47(1), pages 65-74, July.
    11. A. Balbás & E. Galperin & P. Jiménez. Guerra, 2005. "Sensitivity of Pareto Solutions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 126(2), pages 247-264, August.
    12. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    13. Gupta, Jatinder N. D. & Darrow, William P., 1986. "The two-machine sequence dependent flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 24(3), pages 439-446, March.
    14. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    15. Belaid, R. & T’kindt, V. & Esswein, C., 2012. "Scheduling batches in flowshop with limited buffers in the shampoo industry," European Journal of Operational Research, Elsevier, vol. 223(2), pages 560-572.
    16. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    17. Gharbi, Anis & Ladhari, Talel & Msakni, Mohamed Kais & Serairi, Mehdi, 2013. "The two-machine flowshop scheduling problem with sequence-independent setup times: New lower bounding strategies," European Journal of Operational Research, Elsevier, vol. 231(1), pages 69-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S Afshin Mansouri & Emel Aktas, 2016. "Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(11), pages 1382-1394, November.
    2. Ciavotta, Michele & Minella, Gerardo & Ruiz, Rubén, 2013. "Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study," European Journal of Operational Research, Elsevier, vol. 227(2), pages 301-313.
    3. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    4. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    5. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.
    6. Ding, Jian-Ya & Song, Shiji & Wu, Cheng, 2016. "Carbon-efficient scheduling of flow shops by multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 248(3), pages 758-771.
    7. Ruiz, Ruben & Stutzle, Thomas, 2007. "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2033-2049, March.
    8. Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
    9. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    10. Wang, Chuyang & Li, Xiaoping & Wang, Qian, 2010. "Accelerated tabu search for no-wait flowshop scheduling problem with maximum lateness criterion," European Journal of Operational Research, Elsevier, vol. 206(1), pages 64-72, October.
    11. Yunhe Wang & Xiangtao Li & Zhiqiang Ma, 2017. "A Hybrid Local Search Algorithm for the Sequence Dependent Setup Times Flowshop Scheduling Problem with Makespan Criterion," Sustainability, MDPI, vol. 9(12), pages 1-35, December.
    12. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    13. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    14. Ruiz, Ruben & Maroto, Concepcion & Alcaraz, Javier, 2005. "Solving the flowshop scheduling problem with sequence dependent setup times using advanced metaheuristics," European Journal of Operational Research, Elsevier, vol. 165(1), pages 34-54, August.
    15. Rios-Mercado, Roger Z. & Bard, Jonathan F., 1998. "Heuristics for the flow line problem with setup costs," European Journal of Operational Research, Elsevier, vol. 110(1), pages 76-98, October.
    16. Meenakshi Sharma & Manisha Sharma & Sameer Sharma, 2022. "Desert sparrow optimization algorithm for the bicriteria flow shop scheduling problem with sequence-independent setup time," Operational Research, Springer, vol. 22(4), pages 4353-4396, September.
    17. Rossit, Daniel Alejandro & Tohmé, Fernando & Frutos, Mariano, 2018. "The Non-Permutation Flow-Shop scheduling problem: A literature review," Omega, Elsevier, vol. 77(C), pages 143-153.
    18. Li, Xiaoping & Chen, Long & Xu, Haiyan & Gupta, Jatinder N.D., 2015. "Trajectory Scheduling Methods for minimizing total tardiness in a flowshop," Operations Research Perspectives, Elsevier, vol. 2(C), pages 13-23.
    19. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    20. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:248:y:2016:i:3:p:772-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.