IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i2p395-410.html
   My bibliography  Save this article

A landscape-based analysis of fixed temperature and simulated annealing

Author

Listed:
  • Franzin, Alberto
  • Stützle, Thomas

Abstract

Since the introduction of Simulated Annealing (SA), researchers have considered variants that keep the same temperature value throughout the whole search and tried to determine whether this strategy can be more effective than the original cooling scheme. Several studied have tried to answer this question without a conclusive answer and without providing indications that could be useful for a practical implementation. In this work, we address this question following an experimental approach, relating the characteristics of the algorithms with the characteristics of the landscapes they encounter. We use problem-independent landscape features to study the algorithmic behaviour across different problems. We consider three different objective functions and various instance classes and determine the conditions under which the fixed-temperature variant of SA can outperform its original counterpart and when SA is instead a better choice.

Suggested Citation

  • Franzin, Alberto & Stützle, Thomas, 2023. "A landscape-based analysis of fixed temperature and simulated annealing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 395-410.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:395-410
    DOI: 10.1016/j.ejor.2022.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722003125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    2. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    3. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    4. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    5. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    6. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    7. J.E. Orosz & S.H. Jacobson, 2002. "Analysis of Static Simulated Annealing Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 115(1), pages 165-182, October.
    8. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    9. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    10. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    11. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    12. Connolly, David T., 1990. "An improved annealing scheme for the QAP," European Journal of Operational Research, Elsevier, vol. 46(1), pages 93-100, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lobo, Fernando G. & Bazargani, Mosab & Burke, Edmund K., 2020. "A cutoff time strategy based on the coupon collector’s problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 101-114.
    2. Pagnozzi, Federico & Stützle, Thomas, 2019. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 409-421.
    3. Mario Levorato & David Sotelo & Rosa Figueiredo & Yuri Frota, 2024. "Efficient solutions to the m-machine robust flow shop under budgeted uncertainty," Annals of Operations Research, Springer, vol. 338(1), pages 765-799, July.
    4. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
    5. Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
    6. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    7. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    8. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    9. J M Framinan & J N D Gupta & R Leisten, 2004. "A review and classification of heuristics for permutation flow-shop scheduling with makespan objective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1243-1255, December.
    10. Pagnozzi, Federico & Stützle, Thomas, 2021. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints," Operations Research Perspectives, Elsevier, vol. 8(C).
    11. Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
    12. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    13. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    14. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    15. Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
    16. Sioud, A. & Gagné, C., 2018. "Enhanced migrating birds optimization algorithm for the permutation flow shop problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 264(1), pages 66-73.
    17. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    18. Matthias Bultmann & Sigrid Knust & Stefan Waldherr, 2018. "Flow shop scheduling with flexible processing times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 809-829, July.
    19. Framinan, Jose M. & Leisten, Rainer & Ruiz-Usano, Rafael, 2002. "Efficient heuristics for flowshop sequencing with the objectives of makespan and flowtime minimisation," European Journal of Operational Research, Elsevier, vol. 141(3), pages 559-569, September.
    20. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:2:p:395-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.