IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v193y2017icp832-844.html
   My bibliography  Save this article

Makespan minimization in flowshop batch processing problem with different batch compositions on machines

Author

Listed:
  • Matin, Hossein N.Z.
  • Salmasi, Nasser
  • Shahvari, Omid

Abstract

In this research, we consider the flowshop batch processing problem (FBPP) with minimization of makespan, in which the composition of batches can change on different machines. A batch capacity of a machine restricts not only the maximum number of jobs, but also the total attribute size of jobs assigned to the batch processed on the machine. This is the first time that the FBPP is considered for different batch compositions on machines with respect to both the total size and the number of jobs assigned to batches. We propose a mixed-integer linear programming model for the research problem. Since this problem is shown to be NP-hard, several meta-heuristic algorithms based on particle swarm optimization (PSO), enhanced with local search structures, are proposed to solve the research problem heuristically. To have more diversity, different rules are implemented to generate the initial population of the PSO algorithms. Two lower bounding mechanisms are also proposed to generate good quality lower bounds for special cases of the research problem and, consequently, evaluate the performance of the proposed PSO algorithms. A data generation mechanism has been developed in a way that it fairly reflects the real industry requirements. The proposed PSO algorithms are examined by different numerical experiments and the results affirm the efficiency of the proposed algorithms.

Suggested Citation

  • Matin, Hossein N.Z. & Salmasi, Nasser & Shahvari, Omid, 2017. "Makespan minimization in flowshop batch processing problem with different batch compositions on machines," International Journal of Production Economics, Elsevier, vol. 193(C), pages 832-844.
  • Handle: RePEc:eee:proeco:v:193:y:2017:i:c:p:832-844
    DOI: 10.1016/j.ijpe.2017.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527317302992
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2017.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    2. Sung, Chang Sup & Kim, Young Hwan & Yoon, Sang Hum, 2000. "A problem reduction and decomposition approach for scheduling for a flowshop of batch processing machines," European Journal of Operational Research, Elsevier, vol. 121(1), pages 179-192, February.
    3. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    4. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    5. Herbert G. Campbell & Richard A. Dudek & Milton L. Smith, 1970. "A Heuristic Algorithm for the n Job, m Machine Sequencing Problem," Management Science, INFORMS, vol. 16(10), pages 630-637, June.
    6. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Kristianto Singgih & Onyu Yu & Byung-In Kim & Jeongin Koo & Seungdoe Lee, 2020. "Production scheduling problem in a factory of automobile component primer painting," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1483-1496, August.
    2. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    3. Husseinzadeh Kashan, Ali & Ozturk, Onur, 2022. "Improved MILP formulation equipped with valid inequalities for scheduling a batch processing machine with non-identical job sizes," Omega, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    2. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    3. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    4. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    5. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    6. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    7. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    8. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    9. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    10. Allahverdi, Ali, 2003. "The two- and m-machine flowshop scheduling problems with bicriteria of makespan and mean flowtime," European Journal of Operational Research, Elsevier, vol. 147(2), pages 373-396, June.
    11. Framinan, J. M. & Leisten, R., 2003. "An efficient constructive heuristic for flowtime minimisation in permutation flow shops," Omega, Elsevier, vol. 31(4), pages 311-317, August.
    12. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    13. Schaller, Jeffrey E. & Gupta, Jatinder N. D. & Vakharia, Asoo J., 2000. "Scheduling a flowline manufacturing cell with sequence dependent family setup times," European Journal of Operational Research, Elsevier, vol. 125(2), pages 324-339, September.
    14. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    15. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    16. Riane, Fouad & Artiba, Abdelhakim & E. Elmaghraby, Salah, 1998. "A hybrid three-stage flowshop problem: Efficient heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 109(2), pages 321-329, September.
    17. Jia, Zhao-hong & Li, Kai & Leung, Joseph Y.-T., 2015. "Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities," International Journal of Production Economics, Elsevier, vol. 169(C), pages 1-10.
    18. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    19. Rajendran, Chandrasekharan & Ziegler, Hans, 2003. "Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 149(3), pages 513-522, September.
    20. Rajendran, Chandrasekharan & Ziegler, Hans, 2001. "A performance analysis of dispatching rules and a heuristic in static flowshops with missing operations of jobs," European Journal of Operational Research, Elsevier, vol. 131(3), pages 622-634, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:193:y:2017:i:c:p:832-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.