IDEAS home Printed from https://ideas.repec.org/p/zbw/glodps/320.html
   My bibliography  Save this paper

Innovation, Automation, and Inequality: Policy Challenges in the Race against the Machine

Author

Listed:
  • Prettner, Klaus
  • Strulik, Holger

Abstract

We analyze the effects of R&D-driven automation on economic growth, education, and inequality when high-skilled workers are complements to machines and low-skilled workers are substitutes for machines. The model predicts that innovation-driven growth leads to an increasing population share of college graduates, increasing income and wealth inequality, and a declining labor share. We use the model to analyze the effects of redistribution. We show that it is difficult to improve income of low-skilled individuals as long as both technology and education are endogenous. This is true irrespective of whether redistribution is financed by progressive wage taxation or by a robot tax. Only when higher education is stationary, redistribution unambiguously benefits the poor. We show that education subsidies affect the economy differently depending on their mode of funding and that they may actually reduce education. Finally, we extend the model by fair wage concerns and show how automation could induce involuntary low-skilled unemployment.

Suggested Citation

  • Prettner, Klaus & Strulik, Holger, 2019. "Innovation, Automation, and Inequality: Policy Challenges in the Race against the Machine," GLO Discussion Paper Series 320, Global Labor Organization (GLO).
  • Handle: RePEc:zbw:glodps:320
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/191983/1/GLO-DP-0320.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Oded Galor & Omer Moav, 2002. "Natural Selection and the Origin of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1133-1191.
    2. George A. Akerlof & Janet L. Yellen, 1990. "The Fair Wage-Effort Hypothesis and Unemployment," The Quarterly Journal of Economics, Oxford University Press, vol. 105(2), pages 255-283.
    3. Prettner, Klaus & Werner, Katharina, 2016. "Why it pays off to pay us well: The impact of basic research on economic growth and welfare," Research Policy, Elsevier, vol. 45(5), pages 1075-1090.
    4. Holger Strulik & Klaus Prettner & Alexia Prskawetz, 2013. "The past and future of knowledge-based growth," Journal of Economic Growth, Springer, vol. 18(4), pages 411-437, December.
    5. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    6. Zeira, Joseph, 2005. "Machines as Engines of Growth," CEPR Discussion Papers 5429, C.E.P.R. Discussion Papers.
    7. Daron Acemoglu & David Autor, 2012. "What Does Human Capital Do? A Review of Goldin and Katz's The Race between Education and Technology," Journal of Economic Literature, American Economic Association, vol. 50(2), pages 426-463, June.
    8. Peretto, Pietro F. & Seater, John J., 2013. "Factor-eliminating technical change," Journal of Monetary Economics, Elsevier, vol. 60(4), pages 459-473.
    9. Maarten Goos & Alan Manning & Anna Salomons, 2009. "Job Polarization in Europe," American Economic Review, American Economic Association, vol. 99(2), pages 58-63, May.
    10. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    11. Melanie Arntz & Terry Gregory & Ulrich Zierahn, 2016. "The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis," OECD Social, Employment and Migration Working Papers 189, OECD Publishing.
    12. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    13. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, Oxford University Press, vol. 129(1), pages 61-103.
    14. Matteo Cervellati & Uwe Sunde, 2005. "Human Capital Formation, Life Expectancy, and the Process of Development," American Economic Review, American Economic Association, vol. 95(5), pages 1653-1672, December.
    15. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    16. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    17. Cords, Dario & Prettner, Klaus, 2018. "Technological unemployment revisited: Automation in a search and matching framework," Hohenheim Discussion Papers in Business, Economics and Social Sciences 19-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    18. Alberto Alesina & Dani Rodrik, 1994. "Distributive Politics and Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 109(2), pages 465-490.
    19. Eli Bekman & John Bound & Stephen Machin, 1998. "Implications of Skill-Biased Technological Change: International Evidence," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1245-1279.
    20. Galor, Oded, 2005. "From Stagnation to Growth: Unified Growth Theory," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 4, pages 171-293, Elsevier.
    21. Abeliansky, Ana L. & Martínez-Zarzoso, Imnaculada & Prettner, Klaus, 2015. "The impact of 3D printing on trade and FDI," University of Göttingen Working Papers in Economics 262, University of Goettingen, Department of Economics.
    22. Susan M. Dynarski, 2003. "Does Aid Matter? Measuring the Effect of Student Aid on College Attendance and Completion," American Economic Review, American Economic Association, vol. 93(1), pages 279-288, March.
    23. Lankisch, Clemens & Prettner, Klaus & Prskawetz, Alexia, 2019. "How can robots affect wage inequality?," Economic Modelling, Elsevier, vol. 81(C), pages 161-169.
    24. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    25. Oded Galor, 2011. "Unified Growth Theory and Comparative Development," Rivista di Politica Economica, SIPI Spa, issue 2, pages 9-21, April-Jun.
    26. Prettner, Klaus, 2019. "A Note On The Implications Of Automation For Economic Growth And The Labor Share," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1294-1301, April.
    27. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    28. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    29. Prettner, Klaus & Strulik, Holger, 2017. "The lost race against the machine: Automation, education and inequality in an R&D-based growth model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 08-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    30. Gasteiger, Emanuel & Prettner, Klaus, 2017. "A note on automation, stagnation, and the implications of a robot tax," Discussion Papers 2017/17, Free University Berlin, School of Business & Economics.
    31. Holger Strulik, 2005. "The Role of Human Capital and Population Growth in R&D‐based Models of Economic Growth," Review of International Economics, Wiley Blackwell, vol. 13(1), pages 129-145, February.
    32. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    33. Per Krusell & Lee E. Ohanian & JosÈ-Victor RÌos-Rull & Giovanni L. Violante, 2000. "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," Econometrica, Econometric Society, vol. 68(5), pages 1029-1054, September.
    34. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    35. Berg, Andrew & Buffie, Edward F. & Zanna, Luis-Felipe, 2018. "Should we fear the robot revolution? (The correct answer is yes)," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 117-148.
    36. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    37. Oded Galor, 2011. "Unified Growth Theory," Economics Books, Princeton University Press, edition 1, number 9477.
    38. Alwyn Young, 1998. "Growth without Scale Effects," Journal of Political Economy, University of Chicago Press, vol. 106(1), pages 41-63, February.
    39. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    40. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    41. Prettner, Klaus, 2016. "The implications of automation for economic growth and the labor share," Hohenheim Discussion Papers in Business, Economics and Social Sciences 18-2016, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    42. Chakravarty, Satya R, 1988. "Extended Gini Indices of Inequality," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 147-156, February.
    43. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    44. David N. Weil & Oded Galor, 2000. "Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and Beyond," American Economic Review, American Economic Association, vol. 90(4), pages 806-828, September.
    45. Persson, Torsten & Tabellini, Guido, 1994. "Is Inequality Harmful for Growth?," American Economic Review, American Economic Association, vol. 84(3), pages 600-621, June.
    46. Minniti, Antonio & Venturini, Francesco, 2017. "The long-run growth effects of R&D policy," Research Policy, Elsevier, vol. 46(1), pages 316-326.
    47. Jeffrey D. Sachs & Seth G. Benzell & Guillermo LaGarda, 2015. "Robots: Curse or Blessing? A Basic Framework," NBER Working Papers 21091, National Bureau of Economic Research, Inc.
    48. Holger Strulik & Jacob Weisdorf, 2008. "Population, food, and knowledge: a simple unified growth theory," Journal of Economic Growth, Springer, vol. 13(3), pages 195-216, September.
    49. Prettner, Klaus, 2014. "The non-monotonous impact of population growth on economic prosperity," Economics Letters, Elsevier, vol. 124(1), pages 93-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prettner, Klaus & Strulik, Holger, 2017. "The lost race against the machine: Automation, education and inequality in an R&D-based growth model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 08-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    2. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    3. Lehmann-Hasemeyer, Sibylle H. & Prettner, Klaus & Tscheuschner, Paul, 2020. "The scientific revolution and its role in the transition to sustained economic growth," Hohenheim Discussion Papers in Business, Economics and Social Sciences 06-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    4. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    5. Cords, Dario & Prettner, Klaus, 2018. "Technological unemployment revisited: Automation in a search and matching framework," Hohenheim Discussion Papers in Business, Economics and Social Sciences 19-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    6. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    7. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    8. Krenz, Astrid & Prettner, Klaus & Strulik, Holger, 2021. "Robots, reshoring, and the lot of low-skilled workers," European Economic Review, Elsevier, vol. 136(C).
    9. Lankisch, Clemens & Prettner, Klaus & Prskawetz, Alexia, 2019. "How can robots affect wage inequality?," Economic Modelling, Elsevier, vol. 81(C), pages 161-169.
    10. Abeliansky, Ana & Algur, Eda & Bloom, David E. & Prettner, Klaus, 2020. "The Future of Work: Challenges for Job Creation Due to Global Demographic Change and Automation," IZA Discussion Papers 12962, Institute of Labor Economics (IZA).
    11. Alberto Bucci & Klaus Prettner, 2020. "Endogenous education and the reversal in the relationship between fertility and economic growth," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(3), pages 1025-1068, July.
    12. Prettner, Klaus & Werner, Katharina, 2016. "Why it pays off to pay us well: The impact of basic research on economic growth and welfare," Research Policy, Elsevier, vol. 45(5), pages 1075-1090.
    13. Strulik, Holger & Werner, Katharina, 2014. "Elite education, mass education, and the transition to modern growth," University of Göttingen Working Papers in Economics 205, University of Goettingen, Department of Economics.
    14. Baldanzi, Annarita & Bucci, Alberto & Prettner, Klaus, 2021. "Children’S Health, Human Capital Accumulation, And R&D-Based Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 25(3), pages 651-668, April.
    15. Gasteiger, Emanuel & Prettner, Klaus, 2017. "A note on automation, stagnation, and the implications of a robot tax," Discussion Papers 2017/17, Free University Berlin, School of Business & Economics.
    16. Stähler, Nikolai, 2021. "The Impact of Aging and Automation on the Macroeconomy and Inequality," Journal of Macroeconomics, Elsevier, vol. 67(C).
    17. José L. Torres & Pablo Casas, 2020. "Automation, Automatic Capital Returns, and the Functional Income Distribution," Working Papers 2020-02, Universidad de Málaga, Department of Economic Theory, Málaga Economic Theory Research Center.
    18. Annarita BALDANZI & Alberto BUCCI & Klaus PRETTNER, 2016. "The Effects of Health Investments on Human Capital and R&D-Driven Economic Growth," Departmental Working Papers 2016-17, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    19. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    20. Ana Lucia Abeliansky & Klaus Prettner, 2021. "Population Growth and Automation Density: Theory and CrossCountry Evidence," VID Working Papers 2102, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.

    More about this item

    Keywords

    Automation; Innovation-Driven Growth; Inequality; Wealth Concentration; Unemployment; Policy Responses;
    All these keywords.

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E25 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Aggregate Factor Income Distribution
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:glodps:320. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/glabode.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/glabode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.