IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v100y2018i5p753-768.html
   My bibliography  Save this article

Robots at Work

Author

Listed:
  • Georg Graetz

    (Uppsala University)

  • Guy Michaels

    (London School of Economics)

Abstract

We analyze for the first time the economic contributions of modern industrial robots, which are flexible, versatile, and autonomous machines. We use novel panel data on robot adoption within industries in seventeen countries from 1993 to 2007 and new instrumental variables that rely on robots’ comparative advantage in specific tasks. Our findings suggest that increased robot use contributed approximately 0.36 percentage points to annual labor productivity growth, while at the same time raising total factor productivity and lowering output prices. Our estimates also suggest that robots did not significantly reduce total employment, although they did reduce low-skilled workers’ employment share.

Suggested Citation

  • Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
  • Handle: RePEc:tpr:restat:v:100:y:2018:i:5:p:753-768
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/rest_a_00754
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anders Akerman & Ingvil Gaarder & Magne Mogstad, 2015. "The Skill Complementarity of Broadband Internet," The Quarterly Journal of Economics, Oxford University Press, vol. 130(4), pages 1781-1824.
    2. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    3. Nicholas Bloom & Raffaella Sadun & John Van Reenen, 2012. "Americans Do IT Better: US Multinationals and the Productivity Miracle," American Economic Review, American Economic Association, vol. 102(1), pages 167-201, February.
    4. Graetz, Georg & Feng, Andy, 2014. "Rise of the Machines: The Effects of Labor-Saving Innovations on Jobs and Wages," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100401, Verein für Socialpolitik / German Economic Association.
    5. Joseph Zeira, 1998. "Workers, Machines, and Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1091-1117.
    6. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    7. Guy Michaels & Ashwini Natraj & John Van Reenen, 2010. "Has ICT Polarized Skill Demand? Evidence from Eleven Countries over 25 years," NBER Working Papers 16138, National Bureau of Economic Research, Inc.
    8. Emek Basker, 2012. "Raising the Barcode Scanner: Technology and Productivity in the Retail Sector," American Economic Journal: Applied Economics, American Economic Association, vol. 4(3), pages 1-27, July.
    9. Timothy Dunne, 1994. "Plant Age and Technology Use in US. Manufacturing Industries," RAND Journal of Economics, The RAND Corporation, vol. 25(3), pages 488-499, Autumn.
    10. Nicholas Crafts, 2004. "Steam as a general purpose technology: A growth accounting perspective," Economic Journal, Royal Economic Society, vol. 114(495), pages 338-351, April.
    11. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    12. David H. Autor & David Dorn, 2013. "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," American Economic Review, American Economic Association, vol. 103(5), pages 1553-1597, August.
    13. Erik Brynjolfsson & Lorin M. Hitt, 2000. "Beyond Computation: Information Technology, Organizational Transformation and Business Performance," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 23-48, Fall.
    14. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    15. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.
    16. Marcel P. Timmer & Mary O’Mahony & Bart van Ark, 2007. "EU KLEMS Growth and Productivity Accounts: An Overview," International Productivity Monitor, Centre for the Study of Living Standards, vol. 14, pages 71-85, Spring.
    17. Brent Neiman, 2014. "The Global Decline of the Labor Share," The Quarterly Journal of Economics, Oxford University Press, vol. 129(1), pages 61-103.
    18. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    19. Robert J. Gordon, 2012. "Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds," NBER Working Papers 18315, National Bureau of Economic Research, Inc.
    20. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    21. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    22. Rajan, Raghuram G & Zingales, Luigi, 1998. "Financial Dependence and Growth," American Economic Review, American Economic Association, vol. 88(3), pages 559-586, June.
    23. Brewer Mike & Crossley Thomas F. & Joyce Robert, 2018. "Inference with Difference-in-Differences Revisited," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-16, January.
    24. Kevin J. Stiroh, 2002. "Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say?," American Economic Review, American Economic Association, vol. 92(5), pages 1559-1576, December.
    25. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    26. Daron Acemoglu & David Autor & David Dorn & Gordon H. Hanson & Brendan Price, 2014. "Return of the Solow Paradox? IT, Productivity, and Employment in US Manufacturing," American Economic Review, American Economic Association, vol. 104(5), pages 394-399, May.
    27. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    28. Mary O'Mahony & Marcel P. Timmer, 2009. "Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database," Economic Journal, Royal Economic Society, vol. 119(538), pages 374-403, June.
    29. Georg Graetz & Guy Michaels, 2017. "Is Modern Technology Responsible for Jobless Recoveries?," American Economic Review, American Economic Association, vol. 107(5), pages 168-173, May.
    30. John G. Fernald, 1999. "Roads to Prosperity? Assessing the Link between Public Capital and Productivity," American Economic Review, American Economic Association, vol. 89(3), pages 619-638, June.
    31. Mark Doms & Ron Jarmin & Shawn Klimek, 2004. "Information technology investment and firm performance in US retail trade," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 13(7), pages 595-613.
    32. Eric Bartelsman & George Van Leeuwen & Henry Nieuwenhuijsen, 1998. "Adoption Of Advanced Manufacturing Technology And Firm Performance In The Netherlands," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 6(4), pages 291-312.
    33. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    34. Mark Doms & Timothy Dunne & Kenneth R. Troske, 1997. "Workers, Wages, and Technology," The Quarterly Journal of Economics, Oxford University Press, vol. 112(1), pages 253-290.
    35. Ann Bartel & Casey Ichniowski & Kathryn Shaw, 2007. "How Does Information Technology Affect Productivity? Plant-Level Comparisons of Product Innovation, Process Improvement, and Worker Skills," The Quarterly Journal of Economics, Oxford University Press, vol. 122(4), pages 1721-1758.
    36. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 1169-1213.
    37. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    38. Emek Basker, 2012. "Raising the Barcode Scanner: Technology and Productivity in the Retail Sector," NBER Chapters,in: Standards, Patents and Innovations National Bureau of Economic Research, Inc.
    39. Guy Michaels & Ashwini Natraj & John Van Reenen, 2014. "Has ICT Polarized Skill Demand? Evidence from Eleven Countries over Twenty-Five Years," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 60-77, March.
    40. Michael Elsby & Bart Hobijn & Ayseful Sahin, 2013. "The Decline of the U.S. Labor Share," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(2 (Fall)), pages 1-63.
    41. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    42. David Autor, 2014. "Polanyi's Paradox and the Shape of Employment Growth," NBER Working Papers 20485, National Bureau of Economic Research, Inc.
    43. H. Allan Hunt & Timothy L. Hunt, "undated". "Human Resource Implications of Robotics," Upjohn Working Papers hahtlh1985, W.E. Upjohn Institute for Employment Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, Oxford University Press, vol. 132(4), pages 1593-1640.
    2. Genz Sabrina & Janser Markus & Lehmer Florian, 2019. "The Impact of Investments in New Digital Technologies on Wages – Worker-Level Evidence from Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(3), pages 483-521, June.
    3. Thor Berger & Carl Benedikt Frey, 2016. "Structural Transformation in the OECD: Digitalisation, Deindustrialisation and the Future of Work," OECD Social, Employment and Migration Working Papers 193, OECD Publishing.
    4. Janssen, Simon & Mohrenweiser, Jens, 2018. "The Shelf Life of Incumbent Workers during Accelerating Technological Change: Evidence from a Training Regulation Reform," IZA Discussion Papers 11312, Institute of Labor Economics (IZA).
    5. Du, Longzheng & Lin, Weifen, 2022. "Does the application of industrial robots overcome the Solow paradox? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    6. Jelena Reljic & Rinaldo Evangelista & Mario Pianta, 2019. "Digital technologies, employment and skills," LEM Papers Series 2019/36, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Anderton, Robert & Jarvis, Valerie & Labhard, Vincent & Morgan, Julian & Petroulakis, Filippos & Vivian, Lara, 2020. "Virtually everywhere? Digitalisation and the euro area and EU economies," Occasional Paper Series 244, European Central Bank.
    8. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    9. Georg Graetz & Guy Michaels, 2017. "Is Modern Technology Responsible for Jobless Recoveries?," American Economic Review, American Economic Association, vol. 107(5), pages 168-173, May.
    10. Maya Eden & Paul Gaggl, 2018. "On the Welfare Implications of Automation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 15-43, July.
    11. Daron Acemoglu & Pascual Restrepo, 2018. "Low-Skill and High-Skill Automation," Journal of Human Capital, University of Chicago Press, vol. 12(2), pages 204-232.
    12. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    13. Georg Graetz, 2019. "Labor Demand in the Past, Present, and Future," European Economy - Discussion Papers 2015 - 114, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    14. Maarten Goos & Melanie Arntz & Ulrich Zierahn & Terry Gregory & Stephanie Carretero Gomez & Ignacio Gonzalez Vazquez & Koen Jonkers, 2019. "The Impact of Technological Innovation on the Future of Work," JRC Working Papers on Labour, Education and Technology 2019-03, Joint Research Centre (Seville site).
    15. Einiö, Elias, 2015. "The Loss of Production Work: Identification of Demand Shifts Based on Local Soviet Trade Shocks," Working Papers 61, VATT Institute for Economic Research.
    16. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    17. M. Battisti & M. Del Gatto & A. F. Gravina & C. F. Parmeter, 2021. "Robots versus labor skills: a complementarity/substitutability analysis," Working Paper CRENoS 202104, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    19. Cortes, Guido Matias & Salvatori, Andrea, 2019. "Delving into the demand side: Changes in workplace specialization and job polarization," Labour Economics, Elsevier, vol. 57(C), pages 164-176.
    20. Peng, Fei & Anwar, Sajid & Kang, Lili, 2017. "New technology and old institutions: An empirical analysis of the skill-biased demand for older workers in Europe," Economic Modelling, Elsevier, vol. 64(C), pages 1-19.

    More about this item

    JEL classification:

    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:100:y:2018:i:5:p:753-768. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://direct.mit.edu/journals .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ann Olson (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.