IDEAS home Printed from https://ideas.repec.org/p/zbw/tuweco/022020.html
   My bibliography  Save this paper

Automation, stagnation, and the implications of a robot tax

Author

Listed:
  • Gasteiger, Emanuel
  • Prettner, Klaus

Abstract

We assess the long-run growth effects of automation in the overlapping generations framework. Although automation implies constant returns to capital and, thus, an AK production side of the economy, positive long-run growth does not emerge. The reason is that automation suppresses wage income, which is the only source of investment in the overlapping generations model. Our result stands in sharp contrast to the representative agent setting with automation, where sustained long-run growth is possible even without technological progress. Our analysis therefore provides a cautionary tale that the underlying modeling structure of saving/investment decisions matters for the derived economic impact of automation. In addition, we show that a robot tax has the potential to raise per capita output and welfare at the steady state. However, it cannot induce a takeoff toward positive long-run growth.

Suggested Citation

  • Gasteiger, Emanuel & Prettner, Klaus, 2020. "Automation, stagnation, and the implications of a robot tax," ECON WPS - Working Papers in Economic Theory and Policy 02/2020, TU Wien, Institute of Statistics and Mathematical Methods in Economics, Economics Research Unit.
  • Handle: RePEc:zbw:tuweco:022020
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/215429/1/1693366916.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    3. Cooley, Thomas F. & Hansen, Gary D., 1992. "Tax distortions in a neoclassical monetary economy," Journal of Economic Theory, Elsevier, vol. 58(2), pages 290-316, December.
    4. Guimarães, Luís & Mazeda Gil, Pedro, 2022. "Explaining the Labor Share: Automation Vs Labor Market Institutions," Labour Economics, Elsevier, vol. 75(C).
    5. Guerreiro, Joao & Rebelo, S�rgio & Teles, Pedro, 2017. "Should Robots Be Taxed?," CEPR Discussion Papers 12238, C.E.P.R. Discussion Papers.
    6. David Autor & Anna Salomons, 2018. "Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share," NBER Working Papers 24871, National Bureau of Economic Research, Inc.
    7. Daron Acemoglu & David Autor, 2012. "What Does Human Capital Do? A Review of Goldin and Katz's The Race between Education and Technology," Journal of Economic Literature, American Economic Association, vol. 50(2), pages 426-463, June.
    8. Anthony B. Atkinson & Thomas Piketty & Emmanuel Saez, 2011. "Top Incomes in the Long Run of History," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 3-71, March.
    9. Daron Acemoglu & Pascual Restrepo, 2018. "Low-Skill and High-Skill Automation," Journal of Human Capital, University of Chicago Press, vol. 12(2), pages 204-232.
    10. Barro, Robert J, 1974. "Are Government Bonds Net Wealth?," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1095-1117, Nov.-Dec..
    11. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    12. Maya Eden & Paul Gaggl, 2018. "On the Welfare Implications of Automation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 15-43, July.
    13. Guvenen, Fatih, 2006. "Reconciling conflicting evidence on the elasticity of intertemporal substitution: A macroeconomic perspective," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1451-1472, October.
    14. Seth G. Benzell & Laurence J. Kotlikoff & Guillermo LaGarda & Jeffrey D. Sachs, 2015. "Robots Are Us: Some Economics of Human Replacement," NBER Working Papers 20941, National Bureau of Economic Research, Inc.
    15. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 70(1), pages 65-94.
    16. Jeffrey D. Sachs & Laurence J. Kotlikoff, 2012. "Smart Machines and Long-Term Misery," NBER Working Papers 18629, National Bureau of Economic Research, Inc.
    17. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    18. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    19. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    20. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    21. David Autor & Anna Salomons, 2018. "Is Automation Labor Share–Displacing? Productivity Growth, Employment, and the Labor Share," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(1 (Spring), pages 1-87.
    22. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    23. Raj Chetty, 2006. "A New Method of Estimating Risk Aversion," American Economic Review, American Economic Association, vol. 96(5), pages 1821-1834, December.
    24. Cords, Dario & Prettner, Klaus, 2018. "Technological unemployment revisited: Automation in a search and matching framework," Hohenheim Discussion Papers in Business, Economics and Social Sciences 19-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    25. Daron Acemoglu & Pascual Restrepo, 2018. "Demographics and Automation," Boston University - Department of Economics - The Institute for Economic Development Working Papers Series dp-299, Boston University - Department of Economics.
    26. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    27. Rebelo, Sergio, 1991. "Long-Run Policy Analysis and Long-Run Growth," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 500-521, June.
    28. Judd, Kenneth L., 1985. "Redistributive taxation in a simple perfect foresight model," Journal of Public Economics, Elsevier, vol. 28(1), pages 59-83, October.
    29. Lankisch, Clemens & Prettner, Klaus & Prskawetz, Alexia, 2019. "How can robots affect wage inequality?," Economic Modelling, Elsevier, vol. 81(C), pages 161-169.
    30. Daron Acemoglu & Pascual Restrepo, 2018. "Demographics and Automation," Boston University - Department of Economics - Working Papers Series dp-299, Boston University - Department of Economics.
    31. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    32. Chamley, Christophe, 1986. "Optimal Taxation of Capital Income in General Equilibrium with Infinite Lives," Econometrica, Econometric Society, vol. 54(3), pages 607-622, May.
    33. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," Review of Economic Studies, Oxford University Press, vol. 32(3), pages 233-240.
    34. Prettner, Klaus, 2019. "A Note On The Implications Of Automation For Economic Growth And The Labor Share," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1294-1301, April.
    35. Andreoni, James, 1989. "Giving with Impure Altruism: Applications to Charity and Ricardian Equivalence," Journal of Political Economy, University of Chicago Press, vol. 97(6), pages 1447-1458, December.
    36. Jeffrey D. Sachs & Seth G. Benzell & Guillermo LaGarda, 2015. "Robots: Curse or Blessing? A Basic Framework," NBER Working Papers 21091, National Bureau of Economic Research, Inc.
    37. Diamond, Peter A & Mirrlees, James A, 1971. "Optimal Taxation and Public Production II: Tax Rules," American Economic Review, American Economic Association, vol. 61(3), pages 261-278, June.
    38. -, 2015. "迈向中拉 经济 合作 新时代," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 38202 edited by Eclac.
    39. repec:bin:bpeajo:v:49:y:2019:i:2018-01:p:1-87 is not listed on IDEAS
    40. Diamond, Peter A & Mirrlees, James A, 1971. "Optimal Taxation and Public Production: I--Production Efficiency," American Economic Review, American Economic Association, vol. 61(1), pages 8-27, March.
    41. Lucas, Robert E, Jr, 1990. "Supply-Side Economics: An Analytical Review," Oxford Economic Papers, Oxford University Press, vol. 42(2), pages 293-316, April.
    42. DeCanio, Stephen J., 2016. "Robots and humans – complements or substitutes?," Journal of Macroeconomics, Elsevier, vol. 49(C), pages 280-291.
    43. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    44. Abeliansky, Ana Lucia & Martínez-Zarzoso, Inmaculada & Prettner, Klaus, 2020. "3D printing, international trade, and FDI," Economic Modelling, Elsevier, vol. 85(C), pages 288-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    2. Abeliansky, Ana Lucia & Prettner, Klaus, 2021. "Population growth and automation density: theory and cross-country evidence," Department of Economics Working Paper Series 315, WU Vienna University of Economics and Business.
    3. Prettner, Klaus & Strulik, Holger, 2017. "The lost race against the machine: Automation, education and inequality in an R&D-based growth model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 08-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    4. Huang, Xu & Hu, Yan & Dong, Zhiqiang, 2019. "The macroeconomic consequences of artificial intelligence: A theoretical framework," Economics Discussion Papers 2019-48, Kiel Institute for the World Economy (IfW Kiel).
    5. Xiaomeng Zhang & Theodore Palivos & Xiangbo Liu, 2022. "Aging and automation in economies with search frictions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(2), pages 621-642, April.
    6. Stähler, Nikolai, 2021. "The Impact of Aging and Automation on the Macroeconomy and Inequality," Journal of Macroeconomics, Elsevier, vol. 67(C).
    7. Sasaki, Hiroaki & Hagiwara, Takefumi & Pham, Huong & Fukatani, Noriki & Ogawa, Shogo & Okahara, Naoto, 2021. "How Does Automation Affect Economic Growth and Income Distribution in a Two-Class Economy?," MPRA Paper 106481, University Library of Munich, Germany.
    8. Sasaki, Hiroaki, 2021. "Automation Technology, Economic Growth, and Income Distribution in an Economy with Dynasties and Overlapping Generations," MPRA Paper 105446, University Library of Munich, Germany.
    9. Orlando Gomes, 2021. "Growth theory under heterogeneous heuristic behavior," Journal of Evolutionary Economics, Springer, vol. 31(2), pages 533-571, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abeliansky, Ana Lucia & Prettner, Klaus, 2017. "Automation and demographic change," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168215, Verein für Socialpolitik / German Economic Association.
    2. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    3. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    4. Gasteiger, Emanuel & Prettner, Klaus, 2017. "A note on automation, stagnation, and the implications of a robot tax," Discussion Papers 2017/17, Free University Berlin, School of Business & Economics.
    5. Stähler, Nikolai, 2021. "The Impact of Aging and Automation on the Macroeconomy and Inequality," Journal of Macroeconomics, Elsevier, vol. 67(C).
    6. Nikolay Gueorguiev & Mr. Kenji Moriyama & Luis-Felipe Zanna & Ryota Nakatani & Hiroaki Miyamoto & Lahcen Bounader & Mr. Andrew Berg, 2021. "For the Benefit of All: Fiscal Policies and Equity-Efficiency Trade-offs in the Age of Automation," IMF Working Papers 2021/187, International Monetary Fund.
    7. Prettner, Klaus & Strulik, Holger, 2017. "The lost race against the machine: Automation, education and inequality in an R&D-based growth model," Hohenheim Discussion Papers in Business, Economics and Social Sciences 08-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    8. Cords, Dario & Prettner, Klaus, 2018. "Technological unemployment revisited: Automation in a search and matching framework," Hohenheim Discussion Papers in Business, Economics and Social Sciences 19-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    9. Ana Lucia Abeliansky & Klaus Prettner, 2021. "Population Growth and Automation Density: Theory and CrossCountry Evidence," VID Working Papers 2102, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    10. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    11. Krenz, Astrid & Prettner, Klaus & Strulik, Holger, 2021. "Robots, reshoring, and the lot of low-skilled workers," European Economic Review, Elsevier, vol. 136(C).
    12. Lankisch, Clemens & Prettner, Klaus & Prskawetz, Alexia, 2019. "How can robots affect wage inequality?," Economic Modelling, Elsevier, vol. 81(C), pages 161-169.
    13. Ana L. ABELIANSKY & Eda ALGUR & David E. BLOOM & Klaus PRETTNER, 2020. "The future of work: Meeting the global challenges of demographic change and automation," International Labour Review, International Labour Organization, vol. 159(3), pages 285-306, September.
    14. Abeliansky, Ana & Algur, Eda & Bloom, David E. & Prettner, Klaus, 2020. "The Future of Work: Challenges for Job Creation Due to Global Demographic Change and Automation," IZA Discussion Papers 12962, Institute of Labor Economics (IZA).
    15. Kuhn, Michael & Prettner, Klaus, 2020. "Rising longevity, increasing the retirement age, and the consequences for knowledge-based long-run growth," Hohenheim Discussion Papers in Business, Economics and Social Sciences 02-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    16. José L. Torres & Pablo Casas, 2020. "Automation, Automatic Capital Returns, and the Functional Income Distribution," Working Papers 2020-02, Universidad de Málaga, Department of Economic Theory, Málaga Economic Theory Research Center.
    17. Gregory, Terry & Salomons, Anna & Zierahn, Ulrich, 2016. "Racing With or Against the Machine? Evidence from Europe," VfS Annual Conference 2016 (Augsburg): Demographic Change 145843, Verein für Socialpolitik / German Economic Association.
    18. Xiaomeng Zhang & Theodore Palivos & Xiangbo Liu, 2022. "Aging and automation in economies with search frictions," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(2), pages 621-642, April.
    19. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Gasteiger, Emanuel & Prettner, Klaus, 2017. "On the possibility of automation-induced stagnation," Hohenheim Discussion Papers in Business, Economics and Social Sciences 07-2017, University of Hohenheim, Faculty of Business, Economics and Social Sciences.

    More about this item

    Keywords

    Automation; robot taxes; stagnation; economic growth; fiscal policy;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:tuweco:022020. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/imtuwat.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/imtuwat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.