IDEAS home Printed from https://ideas.repec.org/p/zbw/bamber/141.html
   My bibliography  Save this paper

Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics

Author

Listed:
  • Makarewicz, Tomasz

Abstract

Behavioral and experimental literature on financial instability focuses on either subjective price expectations (Learning-to-Forecast experiments) or individual trading (Learning-to-Optimize experiments). Bao et al. (2017) have shown that subjects have problems with both tasks. In this paper, I explore these experimental results by investigating a model in which financial traders individually learn how to use forecasting and/or trading anchor-and-adjustment heuristics by updating them with Genetic Algorithms. The model replicates the main outcomes of these two threads of the experimental finance literature. It shows that both forecasters and traders coordinate on chasing asset price trends, which in turn causes substantial and self-fulfilling price oscillations, albeit larger and faster in the case of trading markets. When agents have to learn both tasks, financial instability becomes more persistent.

Suggested Citation

  • Makarewicz, Tomasz, 2019. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," BERG Working Paper Series 141, Bamberg University, Bamberg Economic Research Group.
  • Handle: RePEc:zbw:bamber:141
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/191601/1/1046952196.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Anufriev, Mikhail & Kopányi, Dávid & Tuinstra, Jan, 2013. "Learning cycles in Bertrand competition with differentiated commodities and competing learning rules," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2562-2581.
    2. Rutström, E. Elisabet & Wilcox, Nathaniel T., 2009. "Stated beliefs versus inferred beliefs: A methodological inquiry and experimental test," Games and Economic Behavior, Elsevier, vol. 67(2), pages 616-632, November.
    3. Bolt, Wilko & Demertzis, Maria & Diks, Cees & Hommes, Cars & Leij, Marco van der, 2019. "Identifying booms and busts in house prices under heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 103(C), pages 234-259.
    4. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.
    5. Annarita Colasante & Simone Alfarano & Eva Camacho & Mauro Gallegati, 2018. "Long-run expectations in a learning-to-forecast experiment," Applied Economics Letters, Taylor & Francis Journals, vol. 25(10), pages 681-687, June.
    6. Lei, Vivian & Noussair, Charles N & Plott, Charles R, 2001. "Nonspeculative Bubbles in Experimental Asset Markets: Lack of Common Knowledge of Rationality vs. Actual Irrationality," Econometrica, Econometric Society, vol. 69(4), pages 831-859, July.
    7. Matthias Weber & John Duffy & Arthur Schram, 2018. "An Experimental Study of Bond Market Pricing," Journal of Finance, American Finance Association, vol. 73(4), pages 1857-1892, August.
    8. Dieci, Roberto & Schmitt, Noemi & Westerhoff, Frank, 2018. "Interactions between stock, bond and housing markets," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 43-70.
    9. Martin Dufwenberg & Tobias Lindqvist & Evan Moore, 2005. "Bubbles and Experience: An Experiment," American Economic Review, American Economic Association, vol. 95(5), pages 1731-1737, December.
    10. Miguel A. Costa-Gomes & Georg Weizsäcker, 2008. "Stated Beliefs and Play in Normal-Form Games," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 729-762.
    11. Charles N. Noussair & Steven Tucker, 2013. "Experimental Research On Asset Pricing," Journal of Economic Surveys, Wiley Blackwell, vol. 27(3), pages 554-569, July.
    12. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    13. Mikhail Anufriev & Cars Hommes & Raoul Philipse, 2013. "Evolutionary selection of expectations in positive and negative feedback markets," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 663-688, July.
    14. Bao, Te & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2012. "Individual expectations, limited rationality and aggregate outcomes," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1101-1120.
    15. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.),Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    16. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    17. Hommes,Cars, 2015. "Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems," Cambridge Books, Cambridge University Press, number 9781107564978, December.
    18. Mikhail Anufriev & Cars Hommes & Tomasz Makarewicz, 2019. "Simple Forecasting Heuristics that Make us Smart: Evidence from Different Market Experiments," Journal of the European Economic Association, European Economic Association, vol. 17(5), pages 1538-1584.
    19. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    20. Marimon Ramon & Spear Stephen E. & Sunder Shyam, 1993. "Expectationally Driven Market Volatility: An Experimental Study," Journal of Economic Theory, Elsevier, vol. 61(1), pages 74-103, October.
    21. John Duffy & M. Ünver, 2006. "Asset price bubbles and crashes with near-zero-intelligence traders," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(3), pages 537-563, April.
    22. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.),Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    23. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    24. Cars Hommes, 2013. "Reflexivity, expectations feedback and almost self-fulfilling equilibria: economic theory, empirical evidence and laboratory experiments," Journal of Economic Methodology, Taylor & Francis Journals, vol. 20(4), pages 406-419, December.
    25. Cars Hommes & Joep Sonnemans & Jan Tuinstra & Henk van de Velden, 2005. "Coordination of Expectations in Asset Pricing Experiments," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 955-980.
    26. Arifovic, Jasmina, 1995. "Genetic algorithms and inflationary economies," Journal of Monetary Economics, Elsevier, vol. 36(1), pages 219-243, August.
    27. Lux, Thomas, 2012. "Estimation of an agent-based model of investor sentiment formation in financial markets," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1284-1302.
    28. Ernan Haruvy & Yaron Lahav & Charles N. Noussair, 2007. "Traders' Expectations in Asset Markets: Experimental Evidence," American Economic Review, American Economic Association, vol. 97(5), pages 1901-1920, December.
    29. Vincent P. Crawford & Miguel A. Costa-Gomes & Nagore Iriberri, 2013. "Structural Models of Nonequilibrium Strategic Thinking: Theory, Evidence, and Applications," Journal of Economic Literature, American Economic Association, vol. 51(1), pages 5-62, March.
    30. Te Bao & Cars Hommes & Tomasz Makarewicz, 2017. "Bubble Formation and (In)Efficient Markets in Learning‐to‐forecast and optimise Experiments," Economic Journal, Royal Economic Society, vol. 127(605), pages 581-609, October.
    31. Smith, Vernon L & Suchanek, Gerry L & Williams, Arlington W, 1988. "Bubbles, Crashes, and Endogenous Expectations in Experimental Spot Asset Markets," Econometrica, Econometric Society, vol. 56(5), pages 1119-1151, September.
    32. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    33. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    34. Heemeijer, Peter & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2009. "Price stability and volatility in markets with positive and negative expectations feedback: An experimental investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1052-1072, May.
    35. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    36. Breaban, Adriana & Noussair, Charles N., 2015. "Trader characteristics and fundamental value trajectories in an asset market experiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 8(C), pages 1-17.
    37. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    38. Dieci, Roberto & Westerhoff, Frank, 2010. "Heterogeneous speculators, endogenous fluctuations and interacting markets: A model of stock prices and exchange rates," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 743-764, April.
    39. Arifovic, Jasmina, 1996. "The Behavior of the Exchange Rate in the Genetic Algorithm and Experimental Economies," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 510-541, June.
    40. Roberto Dieci & Frank Westerhoff, 2012. "A simple model of a speculative housing market," Journal of Evolutionary Economics, Springer, vol. 22(2), pages 303-329, April.
    41. LeBaron, Blake, 2012. "Heterogeneous gain learning and the dynamics of asset prices," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 424-445.
    42. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    43. Michael Kirchler & Jurgen Huber & Thomas Stockl, 2012. "Thar She Bursts: Reducing Confusion Reduces Bubbles," American Economic Review, American Economic Association, vol. 102(2), pages 865-883, April.
    44. Stefan Palan, 2013. "A Review Of Bubbles And Crashes In Experimental Asset Markets," Journal of Economic Surveys, Wiley Blackwell, vol. 27(3), pages 570-588, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph March & Marco Sahm, 2019. "The Perks of Being in the Smaller Team: Incentives in Overlapping Contests," CESifo Working Paper Series 7994, CESifo.
    2. Mundt, Philipp & Alfarano, Simone & Milaković, Mishael, 2020. "Survival and the ergodicity of corporate profitability," BERG Working Paper Series 162, Bamberg University, Bamberg Economic Research Group.
    3. Arata, Yoshiyuki & Mundt, Philipp, 2019. "Topology and formation of production input interlinkages: Evidence from Japanese microdata," BERG Working Paper Series 152, Bamberg University, Bamberg Economic Research Group.
    4. Proaño Acosta, Christian & Lojak, Benjamin, 2019. "Animal spirits, risk premia and monetary policy at the zero lower bound," BERG Working Paper Series 148, Bamberg University, Bamberg Economic Research Group.
    5. Mundt, Philipp & Oh, Ilfan, 2019. "Asymmetric competition, risk, and return distribution," BERG Working Paper Series 145, Bamberg University, Bamberg Economic Research Group.

    More about this item

    Keywords

    Financial Instability; Learning-to-Forecast and Learning-to-Optimize Experiments; Genetic Algorithm Model of Individual Learning;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bamber:141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/bebamde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.