IDEAS home Printed from https://ideas.repec.org/p/uts/ecowps/29.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Simple Forecasting Heuristics that Make us Smart: Evidence from Different Market Experiments

Author

Listed:

Abstract

We study a model in which individual agents use simple linear first order price forecasting rules, adapting them to the complex evolving market environment with a smart Genetic Algorithm optimization procedure. The novelties are: (1) a parsimonious experimental foundation of individual forecasting behaviour; (2) an explanation of individual and aggregate behavior in four different experimental settings, (3) improved one-period and 50-period ahead forecasting of lab experiments, and (4) a characterization of the mean, median and empirical distribution of forecasting heuristics. The median of the distribution of GA forecasting heuristics can be used in designing or validating simple Heuristic Switching Model.

Suggested Citation

  • Mikhail Anufriev & Cars Hommes & Tomasz Makarewicz, 2015. "Simple Forecasting Heuristics that Make us Smart: Evidence from Different Market Experiments," Working Paper Series 29, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:ecowps:29
    as

    Download full text from publisher

    File URL: http://www.uts.edu.au/sites/default/files/AnufrievHommesMakarewitz_0.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karl E. Case & Robert J. Shiller & Anne K. Thompson, 2012. "What Have They Been Thinking? Homebuyer Behavior in Hot and Cold Markets," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(2 (Fall)), pages 265-315.
    2. Bolt, Wilko & Demertzis, Maria & Diks, Cees & Hommes, Cars & Leij, Marco van der, 2019. "Identifying booms and busts in house prices under heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 103(C), pages 234-259.
    3. Florian Wagener, 2014. "Expectations in Experiments," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 421-443, August.
    4. Klaus Adam, 2007. "Experimental Evidence on the Persistence of Output and Inflation," Economic Journal, Royal Economic Society, vol. 117(520), pages 603-636, April.
    5. Michael Woodford, 2010. "Robustly Optimal Monetary Policy with Near-Rational Expectations," American Economic Review, American Economic Association, vol. 100(1), pages 274-303, March.
    6. Carmen M. Reinhart & Kenneth S. Rogoff, 2014. "This Time is Different: A Panoramic View of Eight Centuries of Financial Crises," Annals of Economics and Finance, Society for AEF, vol. 15(2), pages 215-268, November.
    7. Mikhail Anufriev & Cars Hommes & Raoul Philipse, 2013. "Evolutionary selection of expectations in positive and negative feedback markets," Journal of Evolutionary Economics, Springer, vol. 23(3), pages 663-688, July.
    8. William A. Branch, 2004. "The Theory of Rationally Heterogeneous Expectations: Evidence from Survey Data on Inflation Expectations," Economic Journal, Royal Economic Society, vol. 114(497), pages 592-621, July.
    9. Reinhart, Carmen & Rogoff, Kenneth, 2009. "This Time It’s Different: Eight Centuries of Financial Folly-Preface," MPRA Paper 17451, University Library of Munich, Germany.
    10. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Varieties of Crises and Their Dates," Introductory Chapters, in: This Time Is Different: Eight Centuries of Financial Folly, Princeton University Press.
    11. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    12. Allen, Helen & Taylor, Mark P, 1990. "Charts, Noise and Fundamentals in the London Foreign Exchange Market," Economic Journal, Royal Economic Society, vol. 100(400), pages 49-59, Supplemen.
    13. Jan Tuinstra & Florian Wagener, 2007. "On learning equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(3), pages 493-513, March.
    14. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
    15. Heemeijer, Peter & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2009. "Price stability and volatility in markets with positive and negative expectations feedback: An experimental investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1052-1072, May.
    16. Evans, George W. & Ramey, Garey, 2006. "Adaptive expectations, underparameterization and the Lucas critique," Journal of Monetary Economics, Elsevier, vol. 53(2), pages 249-264, March.
    17. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    18. Hommes, Cars & Lux, Thomas, 2013. "Individual Expectations And Aggregate Behavior In Learning-To-Forecast Experiments," Macroeconomic Dynamics, Cambridge University Press, vol. 17(2), pages 373-401, March.
    19. Michael Kopel & Herbert Dawid, 1998. "On economic applications of the genetic algorithm: a model of the cobweb type," Journal of Evolutionary Economics, Springer, vol. 8(3), pages 297-315.
    20. Bao, Te & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2012. "Individual expectations, limited rationality and aggregate outcomes," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1101-1120.
    21. Ricardo Nunes, 2010. "Inflation Dynamics: The Role of Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(6), pages 1161-1172, September.
    22. John Duffy, 2014. "Macroeconomics in the Laboratory," Research in Experimental Economics, in: Experiments in Macroeconomics, volume 17, pages 1-10, Emerald Group Publishing Limited.
    23. Bolt, Wilko & Demertzis, Maria & Diks, Cees & Hommes, Cars & Leij, Marco van der, 2019. "Identifying booms and busts in house prices under heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 103(C), pages 234-259.
    24. Jasmina Arifovic & James Bullard & Olena Kostyshyna, 2013. "Social Learning and Monetary Policy Rules," Economic Journal, Royal Economic Society, vol. 123(567), pages 38-76, March.
    25. Lux, Thomas & Schornstein, Sascha, 2005. "Genetic learning as an explanation of stylized facts of foreign exchange markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 169-196, February.
    26. Assenza, T. & Heemeijer, P. & Hommes, C.H. & Massaro, D., 2021. "Managing self-organization of expectations through monetary policy: A macro experiment," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 170-186.
    27. Andrea Teglio & Simone Alfarano & Eva Camacho-Cuena & Miguel Ginés-Vilar (ed.), 2013. "Managing Market Complexity," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-31301-1, December.
    28. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    29. Mordecai Kurz & Maurizio Motolese, 2011. "Diverse beliefs and time variability of risk premia," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 293-335, June.
    30. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    31. Reinhart, Carmen & Rogoff, Kenneth, 2009. "This Time It’s Different: Eight Centuries of Financial Folly-Chapter 1," MPRA Paper 17452, University Library of Munich, Germany.
    32. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    33. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    34. Roger Guesnerie, 2005. "Assessing Rational Expectations 2: "Eductive" Stability in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262072580, December.
    35. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    36. Pfajfar, Damjan & Žakelj, Blaž, 2014. "Experimental evidence on inflation expectation formation," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 147-168.
    37. Sims, Christopher A., 2010. "Rational Inattention and Monetary Economics," Handbook of Monetary Economics, in: Benjamin M. Friedman & Michael Woodford (ed.), Handbook of Monetary Economics, edition 1, volume 3, chapter 4, pages 155-181, Elsevier.
    38. Cars Hommes & Joep Sonnemans & Jan Tuinstra & Henk van de Velden, 2005. "Coordination of Expectations in Asset Pricing Experiments," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 955-980.
    39. Sargent, Thomas J., 1993. "Bounded Rationality in Macroeconomics: The Arne Ryde Memorial Lectures," OUP Catalogue, Oxford University Press, number 9780198288695, Decembrie.
    40. Lucas, Robert Jr., 1972. "Expectations and the neutrality of money," Journal of Economic Theory, Elsevier, vol. 4(2), pages 103-124, April.
    41. Jan Tuinstra & Claus Weddepohl, 1999. "On the equivalence between the overlapping-generations model and cyclical general-equilibrium models," Journal of Economics, Springer, vol. 70(2), pages 187-207, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nobuyuki Hanaki & Eizo Akiyama & Ryuichiro Ishikawa, 2017. "Effects of eliciting long-run price forecasts on market dynamics in asset market experiments," Working Papers halshs-01263661, HAL.
    2. Bao, Te & Hommes, Cars & Pei, Jiaoying, 2021. "Expectation formation in finance and macroeconomics: A review of new experimental evidence," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    3. Anufriev, Mikhail & Chernulich, Aleksei & Tuinstra, Jan, 2022. "Asset price volatility and investment horizons: An experimental investigation," Journal of Economic Behavior & Organization, Elsevier, vol. 193(C), pages 19-48.
    4. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    5. Jasmina Arifovic & Isabelle Salle & Hung Truong, 2023. "History-Dependent Monetary Regimes: A Lab Experiment and a Henk Model," Tinbergen Institute Discussion Papers 23-028/VI, Tinbergen Institute.
    6. Thorp, S. & Bateman, H. & Dobrescu, L.I. & Newell, B.R. & Ortmann, A., 2020. "Flicking the switch: Simplifying disclosure to improve retirement plan choices," Journal of Banking & Finance, Elsevier, vol. 121(C).
    7. Cars Hommes & Tomasz Makarewicz & Domenico Massaro & Tom Smits, 2017. "Genetic algorithm learning in a New Keynesian macroeconomic setup," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1133-1155, November.
    8. Mikhail Anufriev & John Duffy & Valentyn Panchenko, "undated". "Planar Beauty Contests," Discussion Papers 2019-06, School of Economics, The University of New South Wales.
    9. Cars Hommes & Anita Kopányi-Peuker & Joep Sonnemans, 2021. "Bubbles, crashes and information contagion in large-group asset market experiments," Experimental Economics, Springer;Economic Science Association, vol. 24(2), pages 414-433, June.
    10. Hanaki, Nobuyuki & Akiyama, Eizo & Ishikawa, Ryuichiro, 2018. "Effects of different ways of incentivizing price forecasts on market dynamics and individual decisions in asset market experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 51-69.
    11. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    12. Leonid Serkov & Sergey Krasnykh, 2023. "The Specific Behavior of Economic Agents with Heterogeneous Expectations in the New Keynesian Model with Rigid Prices and Wages," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    13. Makarewicz, Tomasz, 2019. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," BERG Working Paper Series 141, Bamberg University, Bamberg Economic Research Group.
    14. Chernulich, Aleksei, 2021. "Modelling reference dependence for repeated choices: A horse race between models of normalisation," Journal of Economic Psychology, Elsevier, vol. 87(C).
    15. Annicchiarico, Barbara & Surricchio, Silvia & Waldmann, Robert J., 2019. "A behavioral model of the credit cycle," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 53-83.
    16. Mauersberger, Felix, 2021. "Monetary policy rules in a non-rational world: A macroeconomic experiment," Journal of Economic Theory, Elsevier, vol. 197(C).
    17. Deborah Noguera & Gabriel Montes-Rojas, 2023. "Minskyan model with credit rationing in a network economy," SN Business & Economics, Springer, vol. 3(3), pages 1-26, March.
    18. Hommes, Cars & Makarewicz, Tomasz, 2021. "Price level versus inflation targeting under heterogeneous expectations: a laboratory experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 39-82.
    19. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    20. Anufriev, Mikhail & Arifovic, Jasmina & Ledyard, John & Panchenko, Valentyn, 2022. "The role of information in a continuous double auction: An experiment and learning model," Journal of Economic Dynamics and Control, Elsevier, vol. 141(C).
    21. Domenico Colucci & Matteo Vigna & Vincenzo Valori, 2022. "Large and uncertain heterogeneity of expectations: stability of equilibrium from a policy maker standpoint," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(1), pages 319-348, January.
    22. Bao, Te & Füllbrunn, Sascha & Pei, Jiaoying & Zong, Jichuan, 2024. "Reading the market? Expectation coordination and theory of mind," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 510-527.
    23. Noussair, Charles N. & Popescu, Andreea Victoria, 2021. "Comovement and return predictability in asset markets: An experiment with two Lucas trees," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 671-687.
    24. Tomasz Makarewicz, 2017. "Contrarian Behavior, Information Networks and Heterogeneous Expectations in an Asset Pricing Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 231-279, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiziana Assenza & Te Bao & Cars Hommes & Domenico Massaro, 2014. "Experiments on Expectations in Macroeconomics and Finance," Research in Experimental Economics, in: Experiments in Macroeconomics, volume 17, pages 11-70, Emerald Group Publishing Limited.
    2. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    3. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    4. Cars Hommes, 2010. "The heterogeneous expectations hypothesis: some evidence from the lab," Post-Print hal-00753041, HAL.
    5. Hommes, Cars H., 2014. "Behaviorally Rational Expectations and Almost Self-Fulfilling Equilibria," Review of Behavioral Economics, now publishers, vol. 1(1-2), pages 75-97, January.
    6. Mauersberger, Felix, 2021. "Monetary policy rules in a non-rational world: A macroeconomic experiment," Journal of Economic Theory, Elsevier, vol. 197(C).
    7. Tiziana Assenza & William A. Brock & Cars H. Hommes, 2017. "Animal Spirits, Heterogeneous Expectations, And The Amplification And Duration Of Crises," Economic Inquiry, Western Economic Association International, vol. 55(1), pages 542-564, January.
    8. Hommes, Cars & Massaro, Domenico & Weber, Matthias, 2019. "Monetary policy under behavioral expectations: Theory and experiment," European Economic Review, Elsevier, vol. 118(C), pages 193-212.
    9. Hommes, Cars, 2011. "The heterogeneous expectations hypothesis: Some evidence from the lab," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 1-24, January.
    10. Bao, Te & Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan, 2012. "Individual expectations, limited rationality and aggregate outcomes," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1101-1120.
    11. Cars Hommes & Tomasz Makarewicz & Domenico Massaro & Tom Smits, 2017. "Genetic algorithm learning in a New Keynesian macroeconomic setup," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1133-1155, November.
    12. Gerunov, Anton, 2014. "Критичен Преглед На Основните Подходи За Моделиране На Икономическите Очаквания [A Critical Review of Major Approaches for Modeling Economic Expectations]," MPRA Paper 68797, University Library of Munich, Germany.
    13. Pfajfar, Damjan & Žakelj, Blaž, 2014. "Experimental evidence on inflation expectation formation," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 147-168.
    14. Zhu, Jiahua & Bao, Te & Chia, Wai Mun, 2021. "Evolutionary selection of forecasting and quantity decision rules in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 363-404.
    15. Cars Hommes & Anita Kopányi-Peuker & Joep Sonnemans, 2021. "Bubbles, crashes and information contagion in large-group asset market experiments," Experimental Economics, Springer;Economic Science Association, vol. 24(2), pages 414-433, June.
    16. Anufriev, Mikhail & Bao, Te & Tuinstra, Jan, 2016. "Microfoundations for switching behavior in heterogeneous agent models: An experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 129(C), pages 74-99.
    17. Bao, Te & Hennequin, Myrna & Hommes, Cars & Massaro, Domenico, 2020. "Coordination on bubbles in large-group asset pricing experiments," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    18. Cars Hommes, 2013. "Reflexivity, expectations feedback and almost self-fulfilling equilibria: economic theory, empirical evidence and laboratory experiments," Journal of Economic Methodology, Taylor & Francis Journals, vol. 20(4), pages 406-419, December.
    19. Bao, Te & Hommes, Cars, 2019. "When speculators meet suppliers: Positive versus negative feedback in experimental housing markets," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    20. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.

    More about this item

    Keywords

    Expectation Formation; Learning to Forecast Experiment; Genetic Algorithm Model of Individual Learning;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:ecowps:29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/edutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.