IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwwuw/wuwp352.html
   My bibliography  Save this paper

Infection Risk at Work, Automatability, and Employment

Author

Listed:
  • Ana L. Abeliansky

    (Department of Economics, Vienna University of Economics and Business)

  • Klaus Prettner

    (Department of Economics, Vienna University of Economics and Business)

  • Roman Stoellinger

    (Department of Economics, Vienna University of Economics and Business)

Abstract

We propose a model of production featuring the trade-off between employing workers versus employing robots and analyze the extent to which this trade-off is altered by the emergence of a highly transmissible infectious disease. Since workers are - in contrast to robots - susceptible to pathogens and also spread them at the workplace, the emergence of a new infectious disease should reduce demand for human labor. According to the model, the reduction in labor demand concerns automatable occupations and increases with the viral transmission risk. We test the model's predictions using Austrian employment data over the period 2015-2021, during which the COVID-19 pandemic increased the infection risk at the workplace substantially. We find a negative effect on occupation-level employment emanating from the higher viral transmission risk in the COVID years. As predicted by the model, a reduction in employment is detectable for automatable occupations but not for non-automatable occupations.

Suggested Citation

  • Ana L. Abeliansky & Klaus Prettner & Roman Stoellinger, 2023. "Infection Risk at Work, Automatability, and Employment," Department of Economics Working Papers wuwp352, Vienna University of Economics and Business, Department of Economics.
  • Handle: RePEc:wiw:wiwwuw:wuwp352
    Note: PDF Document
    as

    Download full text from publisher

    File URL: https://research.wu.ac.at/ws/portalfiles/portal/59341742/WP352.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fischer, Kai & Reade, J. James & Schmal, W. Benedikt, 2022. "What cannot be cured must be endured: The long-lasting effect of a COVID-19 infection on workplace productivity," Labour Economics, Elsevier, vol. 79(C).
    2. Alex Chernoff & Casey Warman, 2023. "COVID-19 and implications for automation," Applied Economics, Taylor & Francis Journals, vol. 55(17), pages 1939-1957, April.
    3. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The Skill Content of Recent Technological Change: An Empirical Exploration," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1279-1333.
    4. Sara Flisi & Giulia Santangelo, 2022. "Occupations in the European Labour Market During the COVID-19 Pandemic," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 57(2), pages 120-126, March.
    5. Pichler, Stefan & Ziebarth, Nicolas R., 2017. "The pros and cons of sick pay schemes: Testing for contagious presenteeism and noncontagious absenteeism behavior," Journal of Public Economics, Elsevier, vol. 156(C), pages 14-33.
    6. Krenz, Astrid & Prettner, Klaus & Strulik, Holger, 2021. "Robots, reshoring, and the lot of low-skilled workers," European Economic Review, Elsevier, vol. 136(C).
    7. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    8. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    9. Korinek, Anton & Stiglitz, Joseph, 2021. "Artificial Intelligence, Globalization, and Strategies for Economic Development," CEPR Discussion Papers 15772, C.E.P.R. Discussion Papers.
    10. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    11. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    12. Acemoglu, Daron & Autor, David, 2011. "Skills, Tasks and Technologies: Implications for Employment and Earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 12, pages 1043-1171, Elsevier.
    13. de Vries, Gaaitzen J. & Gentile, Elisabetta & Miroudot, Sébastien & Wacker, Konstantin M., 2020. "The rise of robots and the fall of routine jobs," Labour Economics, Elsevier, vol. 66(C).
    14. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The Skill Content of Recent Technological Change: An Empirical Exploration," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(4), pages 1279-1333.
    15. Daron Acemoglu & Pascual Restrepo, 2022. "Demographics and Automation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(1), pages 1-44.
    16. Anthony Barr & Darlene Booth-Bell & Kristen Broady & Ryan Perry, 2023. "The Covid-19 Pandemic Spurred Growth in Automation: What Does this Mean for Minority Workers?," Working Paper Series WP 2023-06, Federal Reserve Bank of Chicago.
    17. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    18. Porto, Edoardo Di & Naticchioni, Paolo & Scrutinio, Vincenzo, 2022. "Lockdown, essential sectors, and Covid-19: Lessons from Italy," Journal of Health Economics, Elsevier, vol. 81(C).
    19. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    20. Blanas, Sotiris & Oikonomou, Rigas, 2023. "COVID-induced economic uncertainty, tasks and occupational demand," Labour Economics, Elsevier, vol. 81(C).
    21. Arntz, Melanie & Gregory, Terry & Zierahn, Ulrich, 2017. "Revisiting the risk of automation," Economics Letters, Elsevier, vol. 159(C), pages 157-160.
    22. Abeliansky, Ana Lucia & Prettner, Klaus, 2023. "Automation and population growth: Theory and cross-country evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 208(C), pages 345-358.
    23. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    24. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    25. Ana L. ABELIANSKY & Eda ALGUR & David E. BLOOM & Klaus PRETTNER, 2020. "The future of work: Meeting the global challenges of demographic change and automation," International Labour Review, International Labour Organization, vol. 159(3), pages 285-306, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikeshita, Kenichiro, 2025. "Effects of automation and human investment on skill premium," Innovation and Green Development, Elsevier, vol. 4(2).
    2. Abeliansky, Ana Lucia & Prettner, Klaus, 2023. "Automation and population growth: Theory and cross-country evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 208(C), pages 345-358.
    3. Krenz, Astrid & Strulik, Holger, 2025. "Automation and the fall and rise of the servant economy," European Economic Review, Elsevier, vol. 172(C).
    4. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    5. Franziska Brall & Ramona Schmid, 2023. "Automation, robots and wage inequality in Germany: A decomposition analysis," LABOUR, CEIS, vol. 37(1), pages 33-95, March.
    6. Gasteiger, Emanuel & Prettner, Klaus, 2022. "Automation, Stagnation, And The Implications Of A Robot Tax," Macroeconomic Dynamics, Cambridge University Press, vol. 26(1), pages 218-249, January.
    7. Peralta, Catarina & Gil, Pedro Mazeda, 2025. "Automation, education, and population: Dynamic effects in an OLG growth and fertility model," Journal of Economic Behavior & Organization, Elsevier, vol. 234(C).
    8. Shohei Momoda & Takayuki Ogawa & Ryosuke Shimizu, 2024. "Automation and Growth Patterns in an Open Economy," KIER Working Papers 1109, Kyoto University, Institute of Economic Research.
    9. Aisa, Rosa & Cabeza, Josefina & Martin, Jorge, 2023. "Automation and aging: The impact on older workers in the workforce," The Journal of the Economics of Ageing, Elsevier, vol. 26(C).
    10. Prettner, Klaus, 2023. "Stagnant wages in the face of rising labor productivity: The potential role of industrial robots," Finance Research Letters, Elsevier, vol. 58(PD).
    11. Jurkat, Anne & Klump, Rainer & Schneider, Florian, 2023. "Robots and Wages: A Meta-Analysis," EconStor Preprints 274156, ZBW - Leibniz Information Centre for Economics.
    12. Daniele Angelini, 2023. "Aging Population and Technology Adoption," Working Paper Series of the Department of Economics, University of Konstanz 2023-01, Department of Economics, University of Konstanz.
    13. Kudoh, Noritaka & Miyamoto, Hiroaki, 2025. "Robots, AI, and unemployment," Journal of Economic Dynamics and Control, Elsevier, vol. 174(C).
    14. Bloom, David E. & Prettner, Klaus & Saadaoui, Jamel & Veruete, Mario, 2025. "Artificial intelligence and the skill premium," Finance Research Letters, Elsevier, vol. 81(C).
    15. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2025. "What workers and robots do: An activity-based analysis of the impact of robotization on changes in local employment," Research Policy, Elsevier, vol. 54(1).
    16. M. Battisti & M. Del Gatto & A. F. Gravina & C. F. Parmeter, 2021. "Robots versus labor skills: a complementarity/substitutability analysis," Working Paper CRENoS 202104, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    17. Andreas Baur & Lisandra Flach & Isabella Gourevich & Florian Unger, 2023. "North-South Trade: The Impact of Robotization," CESifo Working Paper Series 10865, CESifo.
    18. Röser, Florian & Niemann, Stefan & Angelini, Daniele, 2023. "Fiscal Policy and Human Capital in the Race Against the Machine," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277672, Verein für Socialpolitik / German Economic Association.
    19. Gries, Thomas & Naudé, Wim, 2022. "Modelling artificial intelligence in economics," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 56, pages 1-12.
    20. Fernández-Macías, Enrique & Klenert, David & Antón, José-Ignacio, 2021. "Not so disruptive yet? Characteristics, distribution and determinants of robots in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 58(C), pages 76-89.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
    • J32 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Nonwage Labor Costs and Benefits; Retirement Plans; Private Pensions
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwwuw:wuwp352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Department of Economics (email available below). General contact details of provider: http://www.wu.ac.at/economics/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.