IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202440.html
   My bibliography  Save this paper

Supply Chain Constraints and the Predictability of the Conditional Distribution of International Stock Market Returns and Volatility

Author

Listed:
  • Elie Bouri

    (School of Business, Lebanese American University, Lebanon)

  • Oguzhan Cepni

    (Ostim Technical University, Ankara, Turkiye; University of Edinburgh Business School, Centre for Business, Climate Change, and Sustainability; Department of Economics, Copenhagen Business School, Denmark.)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Ruipeng Liu

    (Department of Finance, Deakin Business School, Deakin University, Melbourne, VIC 3125, Australia)

Abstract

This paper analyses the effect of supply constraints on international stock market volatility and while also considering their effect on stock returns. Using higher-order nonparametric causality-in-quantiles tests and daily data for China, France, Germany, Italy, Spain, the United Kingdom, the United States, and overall Europe, we find strong evidence of Granger causality flowing from supply constraints to the entire conditional distribution of stock returns and volatility. Notably, supply constraints positively predict stock volatility. This positive predictability remains robust when using alternative measures, including monthly realized variance and different metrics of supply constraints. Our findings have implications for investors and policymakers.

Suggested Citation

  • Elie Bouri & Oguzhan Cepni & Rangan Gupta & Ruipeng Liu, 2024. "Supply Chain Constraints and the Predictability of the Conditional Distribution of International Stock Market Returns and Volatility," Working Papers 202440, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202440
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matthew Elliott & Benjamin Golub & Matthew V. Leduc, 2022. "Supply Network Formation and Fragility," American Economic Review, American Economic Association, vol. 112(8), pages 2701-2747, August.
    2. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    3. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    4. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    5. Mehmet Balcilar & Rangan Gupta & Duc Khuong Nguyen & Mark E. Wohar, 2018. "Causal effects of the United States and Japan on Pacific-Rim stock markets: nonparametric quantile causality approach," Applied Economics, Taylor & Francis Journals, vol. 50(53), pages 5712-5727, November.
    6. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    7. Gianluca Benigno & Julian di Giovanni & Jan J. J. Groen & Adam I. Noble, 2022. "The GSCPI: A New Barometer of Global Supply Chain Pressures," Staff Reports 1017, Federal Reserve Bank of New York.
    8. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    9. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "The role of time‐varying rare disaster risks in predicting bond returns and volatility," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 327-340, July.
    10. Tillmann, Peter, 2024. "The asymmetric effect of supply chain pressure on inflation," Economics Letters, Elsevier, vol. 235(C).
    11. Jerry Tsai & Jessica A. Wachter, 2015. "Disaster Risk and its Implications for Asset Pricing," NBER Working Papers 20926, National Bureau of Economic Research, Inc.
    12. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    13. Xiwen Bai & Jesús Fernández-Villaverde & Yiliang Li & Francesco Zanetti, 2024. "The Causal Effects of Global Supply Chain Disruptions on Macroeconomic Outcomes: Evidence and Theory," Economics Series Working Papers 1033, University of Oxford, Department of Economics.
    14. Vladimir Smirnyagin & Aleh Tsyvinski, 2022. "Macroeconomic and Asset Pricing Effects of Supply Chain Disasters," NBER Working Papers 30503, National Bureau of Economic Research, Inc.
    15. Alexandr Kopytov & Bineet Mishra & Kristoffer Nimark & Mathieu Taschereau‐Dumouchel, 2024. "Endogenous Production Networks Under Supply Chain Uncertainty," Econometrica, Econometric Society, vol. 92(5), pages 1621-1659, September.
    16. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    17. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "COVID-19 and the Costs of Deadly Disasters," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 366-370, May.
    18. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, June.
    19. Diaz, Elena Maria & Cunado, Juncal & de Gracia, Fernando Perez, 2023. "Commodity price shocks, supply chain disruptions and U.S. inflation," Finance Research Letters, Elsevier, vol. 58(PC).
    20. Mehmet Balcilar & Riza Demirer, 2015. "Effect of Global Shocks and Volatility on Herd Behavior in an Emerging Market: Evidence from Borsa Istanbul," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(1), pages 140-159, January.
    21. Hupka, Yuri, 2022. "Leverage and the global supply chain," Finance Research Letters, Elsevier, vol. 50(C).
    22. Scott R Baker & Nicholas Bloom & Stephen J Terry, 2024. "Using Disasters to Estimate the Impact of Uncertainty," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 720-747.
    23. Baghersad, Milad & Zobel, Christopher W., 2021. "Assessing the extended impacts of supply chain disruptions on firms: An empirical study," International Journal of Production Economics, Elsevier, vol. 231(C).
    24. Ginn, William, 2024. "Global supply chain disruptions and financial conditions," Economics Letters, Elsevier, vol. 239(C).
    25. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    26. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    27. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    28. Pablo Burriel & Iván Kataryniuk & Carlos Moreno Pérez & Francesca Viani, 2024. "A New Supply Bottlenecks Index Based on Newspaper Data," International Journal of Central Banking, International Journal of Central Banking, vol. 20(2), pages 17-67, April.
    29. Kevin B. Hendricks & Vinod R. Singhal, 2005. "Association Between Supply Chain Glitches and Operating Performance," Management Science, INFORMS, vol. 51(5), pages 695-711, May.
    30. Ascari, Guido & Bonam, Dennis & Smadu, Andra, 2024. "Global supply chain pressures, inflation, and implications for monetary policy," Journal of International Money and Finance, Elsevier, vol. 142(C).
    31. Kevin L. Kliesen & Devin Werner, 2022. "Using Beige Book Text Analysis to Measure Supply Chain Disruptions," Economic Synopses, Federal Reserve Bank of St. Louis, issue 18, pages 1-2, June.
    32. Jerry Tsai & Jessica A. Wachter, 2015. "Disaster Risk and Its Implications for Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 219-252, December.
    33. Robert J. Barro, 2009. "Rare Disasters, Asset Prices, and Welfare Costs," American Economic Review, American Economic Association, vol. 99(1), pages 243-264, March.
    34. Omid Asadollah & Linda Schwartz Carmy & Md. Rezwanul Hoque & Hakan Yilmazkuday, 2024. "Geopolitical risk, supply chains, and global inflation," The World Economy, Wiley Blackwell, vol. 47(8), pages 3450-3486, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mawuli Segnon & Bjorn Schulte-Tillmann & Riza Demirer & Rangan Gupta, 2025. "Deglobalization and Foreign Exchange Volatility: The Role of Supply Chain Pressures," Working Papers 202506, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Bonato & Rangan Gupta & Christian Pierdzioch, 2024. "Do Shortages Forecast Aggregate and Sectoral U.S. Stock Market Realized Variance? Evidence from a Century of Data," Working Papers 202450, University of Pretoria, Department of Economics.
    2. Ginn, William & Saadaoui, Jamel, 2025. "Impact of supply chain pressures on financial leverage," International Review of Financial Analysis, Elsevier, vol. 98(C).
    3. Rangan Gupta & Tahir Suleman & Mark E. Wohar, 2019. "The role of time‐varying rare disaster risks in predicting bond returns and volatility," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 327-340, July.
    4. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    5. Elie Bouri & Rangan Gupta & Asingamaanda Liphadzi & Christian Pierdzioch, 2024. "Forecasting Stock Returns Volatility of the G7 Over Centuries: The Role of Climate Risks," Working Papers 202424, University of Pretoria, Department of Economics.
    6. Caporin, Massimiliano & Caraiani, Petre & Cepni, Oguzhan & Gupta, Rangan, 2025. "Predicting the conditional distribution of US stock market systemic Stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 101(C).
    7. Gupta, Rangan & Nel, Jacobus & Nielsen, Joshua & Pierdzioch, Christian, 2025. "Stock market volatility and multi-scale positive and negative bubbles," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    8. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    9. Ginn, William, 2024. "Global supply chain disruptions and financial conditions," Economics Letters, Elsevier, vol. 239(C).
    10. Balcilar, Mehmet & Gupta, Rangan & Nel, Jacobus, 2022. "Rare disaster risks and gold over 700 years: Evidence from nonparametric quantile regressions," Resources Policy, Elsevier, vol. 79(C).
    11. Laumer, Sebastian & Schaffer, Matthew, 2025. "Monetary policy transmission under supply chain pressure," European Economic Review, Elsevier, vol. 172(C).
    12. Isoré, Marlène & Szczerbowicz, Urszula, 2017. "Disaster risk and preference shifts in a New Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 97-125.
    13. Stan Olijslagers & Sweder van Wijnbergen, 2019. "Discounting the Future: on Climate Change, Ambiguity Aversion and Epstein-Zin Preferences," Tinbergen Institute Discussion Papers 19-030/VI, Tinbergen Institute.
    14. Ilya Dergunov & Christoph Meinerding & Christian Schlag, 2023. "Extreme Inflation and Time-Varying Expected Consumption Growth," Management Science, INFORMS, vol. 69(5), pages 2972-3002, May.
    15. Juan Carlos Parra‐Alvarez & Olaf Posch & Andreas Schrimpf, 2022. "Peso problems in the estimation of the C‐CAPM," Quantitative Economics, Econometric Society, vol. 13(1), pages 259-313, January.
    16. Plakandaras, Vasilios & Gupta, Rangan & Balcilar, Mehmet & Ji, Qiang, 2022. "Evolving United States stock market volatility: The role of conventional and unconventional monetary policies," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    17. Roberto Marfè & Julien Penasse, 2016. "The Time-Varying Risk of Macroeconomic Disasters," Carlo Alberto Notebooks 463, Collegio Carlo Alberto.
    18. Ahdi Noomen Ajmi & Roula Inglesi-Lotz, 2021. "Revisiting the Kuznets Curve Hypothesis for Tunisia: Carbon Dioxide vs. Ecological Footprint," Working Papers 202171, University of Pretoria, Department of Economics.
    19. Dergunov, Ilya & Meinerding, Christoph & Schlag, Christian, 2019. "Extreme inflation and time-varying consumption growth," Discussion Papers 16/2019, Deutsche Bundesbank.
    20. Sönksen, Jantje & Grammig, Joachim, 2021. "Empirical asset pricing with multi-period disaster risk: A simulation-based approach," Journal of Econometrics, Elsevier, vol. 222(1), pages 805-832.

    More about this item

    Keywords

    Supply Constraints; Stock Markets Volatility; Higher-Order Nonparametric Causality-in-Quantiles Test;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.