IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202528.html
   My bibliography  Save this paper

The Roles of Global Supply Chain Pressure and Economic Conditions in Forecasting the VaR of Commodity Markets: A Quantile GARCH-MIDAS Approach

Author

Listed:
  • Zhangying Li

    (Economics and Management School, Wuhan University)

  • O-Chia Chuang

    (School of Digital Economics, Hubei University of Economics)

  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Elie Bouri

    (School of Business, Lebanese American University, Lebanon)

Abstract

Accurately predicting the Value-at-Risk (VaR) in commodity markets is crucial for risk management, yet the volatility and cyclicality of commodity prices pose significant challenges. This paper innovatively incorporates the information content of the Global Supply Chain Pressure Index (GSCPI) and the Global Economic Conditions Index (GECON) into the quantile Genaralized Autoregressive Conditional Heteroskedasticty-Mixed Data Sampling (GARCH-MIDAS) framework to address the issue of mismatched data frequencies, and explores the impact of these monthly indicators on daily commodity returns volatility. We find that the MIDAS framework significantly outperforms the conditional autoregressive VaR by regression quantiles (CAViaR) model, with asymmetric models showing superior performance. Both GSCPI and GECON exhibit strong explanatory power for VaR forecasting, highlighting the important influence of global supply and demand conditions on returns volatility of the overall commodity market, as well as its various sub-sectors.

Suggested Citation

  • Zhangying Li & O-Chia Chuang & Rangan Gupta & Elie Bouri, 2025. "The Roles of Global Supply Chain Pressure and Economic Conditions in Forecasting the VaR of Commodity Markets: A Quantile GARCH-MIDAS Approach," Working Papers 202528, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202528
    as

    Download full text from publisher

    File URL: http://www.up.ac.za/media/shared/61/WP/wp_2025_28.zp270929.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Afees A. Salisu & Rangan Gupta & Elie Bouri & Qiang Ji, 2022. "Mixed‐frequency forecasting of crude oil volatility based on the information content of global economic conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 134-157, January.
    2. Ing-Haw Cheng & Wei Xiong, 2014. "Financialization of Commodity Markets," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 419-441, December.
    3. Ke Tang & Wei Xiong, 2012. "Index Investment and the Financialization of Commodities," Financial Analysts Journal, Taylor & Francis Journals, vol. 68(6), pages 54-74, November.
    4. Wang, Jiqian & Ma, Feng & Bouri, Elie & Zhong, Juandan, 2022. "Volatility of clean energy and natural gas, uncertainty indices, and global economic conditions," Energy Economics, Elsevier, vol. 108(C).
    5. Bouri, Elie & Cepni, Oguzhan & Gupta, Rangan & Liu, Ruipeng, 2025. "Supply chain constraints and the predictability of the conditional distribution of international stock market returns and volatility," Economics Letters, Elsevier, vol. 247(C).
    6. William Ginn & Jamel Saadaoui, 2025. "Do Supply Chain Disruptions Matter for Global Economic Conditions?," The World Economy, Wiley Blackwell, vol. 48(7), pages 1534-1551, July.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Demirer, Riza & Gupta, Rangan & Suleman, Tahir & Wohar, Mark E., 2018. "Time-varying rare disaster risks, oil returns and volatility," Energy Economics, Elsevier, vol. 75(C), pages 239-248.
    9. Ohashi, Kazuhiko & Okimoto, Tatsuyoshi, 2016. "Increasing trends in the excess comovement of commodity prices," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 48-64.
    10. Ascari, Guido & Bonam, Dennis & Smadu, Andra, 2024. "Global supply chain pressures, inflation, and implications for monetary policy," Journal of International Money and Finance, Elsevier, vol. 142(C).
    11. Turan G. Bali, 2003. "An Extreme Value Approach to Estimating Volatility and Value at Risk," The Journal of Business, University of Chicago Press, vol. 76(1), pages 83-108, January.
    12. Francois Gourio, 2012. "Disaster Risk and Business Cycles," American Economic Review, American Economic Association, vol. 102(6), pages 2734-2766, October.
    13. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    14. Gozgor, Giray & Khalfaoui, Rabeh & Yarovaya, Larisa, 2023. "Global supply chain pressure and commodity markets: Evidence from multiple wavelet and quantile connectedness analyses," Finance Research Letters, Elsevier, vol. 54(C).
    15. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    16. Ing-Haw Cheng & Andrei Kirilenko & Wei Xiong, 2015. "Convective Risk Flows in Commodity Futures Markets," Review of Finance, European Finance Association, vol. 19(5), pages 1733-1781.
    17. Pablo Burriel & Iván Kataryniuk & Carlos Moreno Pérez & Francesca Viani, 2024. "A New Supply Bottlenecks Index Based on Newspaper Data," International Journal of Central Banking, International Journal of Central Banking, vol. 20(2), pages 17-67, April.
    18. Diaz, Elena Maria & Cunado, Juncal & de Gracia, Fernando Perez, 2023. "Commodity price shocks, supply chain disruptions and U.S. inflation," Finance Research Letters, Elsevier, vol. 58(PC).
    19. James D. Hamilton & Jing Cynthia Wu, 2015. "Effects Of Index‐Fund Investing On Commodity Futures Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 187-205, February.
    20. Silvennoinen, Annastiina & Thorp, Susan, 2013. "Financialization, crisis and commodity correlation dynamics," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 42-65.
    21. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    22. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    23. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 645-700.
    24. Qunzi Zhang, 2021. "One hundred years of rare disaster concerns and commodity prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1891-1915, December.
    25. Adams, Zeno & Glueck, Thorsten, 2014. "Financialization in Commodity Markets: A Passing Trend or the New Normal?," Working Papers on Finance 1413, University of St. Gallen, School of Finance, revised Aug 2015.
    26. Hahn, Jinyong, 1995. "Bootstrapping Quantile Regression Estimators," Econometric Theory, Cambridge University Press, vol. 11(1), pages 105-121, February.
    27. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    28. Adams, Zeno & Glück, Thorsten, 2015. "Financialization in commodity markets: A passing trend or the new normal?," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 93-111.
    29. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    30. Ginn, William, 2024. "Global supply chain disruptions and financial conditions," Economics Letters, Elsevier, vol. 239(C).
    31. Xu, Yan & Wang, Xinyu & Liu, Hening, 2021. "Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information," Finance Research Letters, Elsevier, vol. 43(C).
    32. Jacobus Nel & Rangan Gupta & Mark E. Wohar & Christian Pierdzioch, 2024. "Climate Risks And Predictability Of Commodity Returns And Volatility: Evidence From Over 750 Years Of Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-40, November.
    33. James D. Hamilton & Jing Cynthia Wu, 2015. "Effects Of Index‐Fund Investing On Commodity Futures Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 187-205, February.
    34. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    35. Polat, Onur & Somani, Dhanashree & Gupta, Rangan & Karmakar, Sayar, 2025. "Shortages and machine-learning forecasting of oil returns volatility: 1900–2024," Finance Research Letters, Elsevier, vol. 79(C).
    36. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    37. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhanashree Somani & Rangan Gupta & Sayar Karmakar & Vasilios Plakandaras, 2025. "Supply Bottlenecks and Machine Learning Forecasting of International Stock Market Volatility," Working Papers 202521, University of Pretoria, Department of Economics.
    2. Byrne, Joseph P. & Sakemoto, Ryuta, 2025. "Commodity correlation risk," Journal of Commodity Markets, Elsevier, vol. 38(C).
    3. Xu, Yan & Wang, Xinyu & Liu, Hening, 2021. "Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information," Finance Research Letters, Elsevier, vol. 43(C).
    4. Bianchi, Robert J. & Fan, John Hua & Todorova, Neda, 2020. "Financialization and de-financialization of commodity futures: A quantile regression approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
    5. Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
    6. Matteo Bonato & Rangan Gupta & Christian Pierdzioch, 2024. "Do Shortages Forecast Aggregate and Sectoral U.S. Stock Market Realized Variance? Evidence from a Century of Data," Working Papers 202450, University of Pretoria, Department of Economics.
    7. Idilbi-Bayaa, Yasmeen & Qadan, Mahmoud, 2022. "What the current yield curve says, and what the future prices of energy do," Resources Policy, Elsevier, vol. 75(C).
    8. Batista Soares, David & Borocco, Etienne, 2022. "Rational destabilization in commodity markets," Journal of Commodity Markets, Elsevier, vol. 25(C).
    9. Wen, Xiaoqian & Xie, Yuxin & Pantelous, Athanasios A., 2022. "Extreme price co-movement of commodity futures and industrial production growth: An empirical evaluation," Energy Economics, Elsevier, vol. 108(C).
    10. Bredin, Don & O'Sullivan, Conall & Spencer, Simon, 2021. "Forecasting WTI crude oil futures returns: Does the term structure help?," Energy Economics, Elsevier, vol. 100(C).
    11. Papenfuß, Patric & Schischke, Amelie & Rathgeber, Andreas, 2025. "Factors of predictive power for metal commodities," The North American Journal of Economics and Finance, Elsevier, vol. 76(C).
    12. Aït-Youcef, Camille & Joëts, Marc, 2024. "The role of index traders in the financialization of commodity markets: A behavioral finance approach," Energy Economics, Elsevier, vol. 136(C).
    13. Ohashi, Kazuhiko & Okimoto, Tatsuyoshi, 2016. "Increasing trends in the excess comovement of commodity prices," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 48-64.
    14. Duc Khuong Nguyen & Thomas Walther, 2020. "Modeling and forecasting commodity market volatility with long‐term economic and financial variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
    15. Filippo Natoli, 2021. "Financialization Of Commodities Before And After The Great Financial Crisis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 488-511, April.
    16. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    17. Camille Aït-Youcef, 2019. "How index investment impacts commodities : A story about the financialization of agricultural commodities," Post-Print hal-03484371, HAL.
    18. Wu, Nan & Wen, Fenghua & Gong, Xu, 2022. "Marionettes behind co-movement of commodity prices: Roles of speculative and hedging activities," Energy Economics, Elsevier, vol. 115(C).
    19. Yao, Wei, 2025. "The US Quantitative Easing Monetary Policy and Commodities’ Prices," Other publications TiSEM 185d14d3-9dc2-4276-82ec-e, Tilburg University, School of Economics and Management.
    20. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.