IDEAS home Printed from https://ideas.repec.org/p/jhu/papers/474.html
   My bibliography  Save this paper

Learning Hypothesis Testing and Nash Equilibrium

Author

Listed:
  • Peyton Young

Abstract

Although there exist learning processes for which the empirical distribution of play comes close to Nash equilibrium it is an open question whether the players themselves can learn to play equilibrium strategies without assuming that they have prior knowledge of their opponents' strategies and/or payoffs We exhibit a large class of statistical hypotheses testing procedures that solve this problem Consider a finite stage game G that is repeated infinitely often At each time the players have hypotheses about their opponents' repeated game strategies They frequently test their hypotheses against the opponents' recent actions When a hypotheses fails test a new one is adopted Play is almost rational in the sense that at each point of time the players' strategies are є -best replies to their beliefs We show that at least 1 - є of the time t these hypotheses testing strategies constitute an є-equilibrium of the repeated game from t on; in fact the strategies are close to being subgame perfect for long stretches of time Further all players for whom prediction matters ie whose best responses depend on the opponents' behavior learn to predict within є

Suggested Citation

  • Peyton Young, 2002. "Learning Hypothesis Testing and Nash Equilibrium," Economics Working Paper Archive 474, The Johns Hopkins University,Department of Economics.
  • Handle: RePEc:jhu:papers:474
    as

    Download full text from publisher

    File URL: http://www.econ2.jhu.edu/REPEC/papers/WP474.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jordan J. S., 1993. "Three Problems in Learning Mixed-Strategy Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 368-386, July.
    2. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    3. John H. Nachbar, 1997. "Prediction, Optimization, and Learning in Repeated Games," Econometrica, Econometric Society, vol. 65(2), pages 275-310, March.
    4. Dean Foster & H Peyton Young, 1999. "On the Impossibility of Predicting the Behavior of Rational Agents," Economics Working Paper Archive 423, The Johns Hopkins University,Department of Economics, revised Jun 2001.
    5. Foster, Dean P., 1999. "A Proof of Calibration via Blackwell's Approachability Theorem," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 73-78, October.
    6. Foster, Dean P. & Vohra, Rakesh, 1999. "Regret in the On-Line Decision Problem," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 7-35, October.
    7. Fudenberg, Drew & Levine, David K., 1999. "An Easier Way to Calibrate," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 131-137, October.
    8. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    9. Fudenberg, Drew & Levine, David K., 1995. "Consistency and cautious fictitious play," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 1065-1089.
    10. Kalai, Ehud & Lehrer, Ehud, 1993. "Rational Learning Leads to Nash Equilibrium," Econometrica, Econometric Society, vol. 61(5), pages 1019-1045, September.
    11. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    12. Jordan J. S., 1995. "Bayesian Learning in Repeated Games," Games and Economic Behavior, Elsevier, vol. 9(1), pages 8-20, April.
    13. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    14. John H. Nachbar, 2001. "Bayesian learning in repeated games of incomplete information," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 18(2), pages 303-326.
    15. Ronald Miller & Chris Sanchirico, "undated". "Almost Everybody Disagrees Almost All the Time: The Genericity of Weakly Merging Nowhere," Scholarship at Penn Law upenn_wps-1001, University of Pennsylvania Law School.
    16. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
    17. Dean Foster & Peyton Young, "undated". "Learning with Hazy Beliefs," ELSE working papers 023, ESRC Centre on Economics Learning and Social Evolution.
    18. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    19. Foster, Dean P. & Young, H. Peyton, 1998. "On the Nonconvergence of Fictitious Play in Coordination Games," Games and Economic Behavior, Elsevier, vol. 25(1), pages 79-96, October.
    20. Jeheil Phillippe, 1995. "Limited Horizon Forecast in Repeated Alternate Games," Journal of Economic Theory, Elsevier, vol. 67(2), pages 497-519, December.
    21. Nyarko, Yaw, 1994. "Bayesian Learning Leads to Correlated Equilibria in Normal Form Games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(6), pages 821-841, October.
    22. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burkhard Schipper, 2015. "Strategic teaching and learning in games," Working Papers 151, University of California, Davis, Department of Economics.
    2. Mannor, Shie & Shimkin, Nahum, 2008. "Regret minimization in repeated matrix games with variable stage duration," Games and Economic Behavior, Elsevier, vol. 63(1), pages 227-258, May.
    3. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    4. Sandroni, Alvaro & Smorodinsky, Rann, 2004. "Belief-based equilibrium," Games and Economic Behavior, Elsevier, vol. 47(1), pages 157-171, April.
    5. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    6. Eric Friedman & Scott Shenker & Amy Greenwald, 1998. "Learning in Networks Contexts: Experimental Results from Simulations," Departmental Working Papers 199825, Rutgers University, Department of Economics.
    7. Young, H. Peyton, 2002. "On the limits to rational learning," European Economic Review, Elsevier, vol. 46(4-5), pages 791-799, May.
    8. Dean P Foster & Peyton Young, 2006. "Regret Testing Leads to Nash Equilibrium," Levine's Working Paper Archive 784828000000000676, David K. Levine.
    9. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    10. Kalai, Ehud & Lehrer, Ehud & Smorodinsky, Rann, 1999. "Calibrated Forecasting and Merging," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 151-169, October.
    11. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    12. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    13. Ehud Lehrer & Eilon Solan, 2016. "A General Internal Regret-Free Strategy," Dynamic Games and Applications, Springer, vol. 6(1), pages 112-138, March.
    14. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    15. H. Peyton Young, 2007. "The Possible and the Impossible in Multi-Agent Learning," Economics Series Working Papers 304, University of Oxford, Department of Economics.
    16. Drew Fudenberg & David K Levine, 2016. "Whither Game Theory?," Levine's Working Paper Archive 786969000000001307, David K. Levine.
    17. Ehud Lehrer & Eilon Solan, 2007. "Learning to play partially-specified equilibrium," Levine's Working Paper Archive 122247000000001436, David K. Levine.
    18. Eddie Dekel & Yossi Feinberg, 2006. "Non-Bayesian Testing of a Stochastic Prediction," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 893-906.
    19. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    20. Hofbauer, Josef & Sandholm, William H., 2009. "Stable games and their dynamics," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1665-1693.4, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jhu:papers:474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Humphrey Muturi (email available below). General contact details of provider: https://edirc.repec.org/data/dejhuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.